{"title":"Responses of radial growth and stable carbon isotopes to climate in the northern Tianshan Mountains","authors":"Li Qin, Yujiang Yuan, Shulong Yu, Huaming Shang, Tongwen Zhang, Ruibo Zhang","doi":"10.1016/j.dendro.2023.126098","DOIUrl":null,"url":null,"abstract":"<div><p>Climate change has profound effects on forest ecosystems. Schrenk spruce (<em>P. schrenkiana</em><span><span>) is a natural conifer species endemic to the arid inland areas of </span>Asia. In this study, the relationship between tree-ring parameters of </span><em>P. schrenkiana</em><span><span> and major meteorological factors were analyzed, and the main limiting factors for tree radial growth and stable carbon isotope fractionation were explored. Our results indicate that </span>moisture stress before and during the growing season have an important influence on radial growth of </span><em>P. schrenkiana</em><span>, especially, the correlation coefficient<span> between tree-ring width and vapor pressure deficit (VPD) from previous August to current July is as high as −0.622 (n = 51, p < 0.01). Collinearity analysis further supports the conclusion that the limiting factor for the radial growth of </span></span><em>P. schrenkiana</em> is moisture. Although the correlation analysis results show that the tree-ring δ<sup>13</sup>C<sub>corr</sub><span> is significantly positively correlated with sunshine duration (SD), additional analysis based on first order difference variables suggests that the climate factor may not be the only limiting factor for the stable carbon isotope fractionation of tree rings in the Sayram Lake Basin. This lays the foundation for the assessment of forest management practices and carbon sink capacity in light of future climate change.</span></p></div>","PeriodicalId":50595,"journal":{"name":"Dendrochronologia","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dendrochronologia","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1125786523000486","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0
Abstract
Climate change has profound effects on forest ecosystems. Schrenk spruce (P. schrenkiana) is a natural conifer species endemic to the arid inland areas of Asia. In this study, the relationship between tree-ring parameters of P. schrenkiana and major meteorological factors were analyzed, and the main limiting factors for tree radial growth and stable carbon isotope fractionation were explored. Our results indicate that moisture stress before and during the growing season have an important influence on radial growth of P. schrenkiana, especially, the correlation coefficient between tree-ring width and vapor pressure deficit (VPD) from previous August to current July is as high as −0.622 (n = 51, p < 0.01). Collinearity analysis further supports the conclusion that the limiting factor for the radial growth of P. schrenkiana is moisture. Although the correlation analysis results show that the tree-ring δ13Ccorr is significantly positively correlated with sunshine duration (SD), additional analysis based on first order difference variables suggests that the climate factor may not be the only limiting factor for the stable carbon isotope fractionation of tree rings in the Sayram Lake Basin. This lays the foundation for the assessment of forest management practices and carbon sink capacity in light of future climate change.
期刊介绍:
Dendrochronologia is a peer-reviewed international scholarly journal that presents high-quality research related to growth rings of woody plants, i.e., trees and shrubs, and the application of tree-ring studies.
The areas covered by the journal include, but are not limited to:
Archaeology
Botany
Climatology
Ecology
Forestry
Geology
Hydrology
Original research articles, reviews, communications, technical notes and personal notes are considered for publication.