Numerical simulation of probabilistic computing to NP-complete number theory problems

IF 1.5 4区 工程技术 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY
Jie Zhu, Zhengxiang Xie, P. Bermel
{"title":"Numerical simulation of probabilistic computing to NP-complete number theory problems","authors":"Jie Zhu, Zhengxiang Xie, P. Bermel","doi":"10.1117/1.JPE.13.028501","DOIUrl":null,"url":null,"abstract":"Abstract. Probabilistic computing with p-bits is a powerful, unique paradigm alternative to classical computing and holds experimental advantages over certain forms of quantum computing. Stochastic nanodevices have been experimentally demonstrated to act as artificial neurons in solving certain problems through probabilistic computing. Still, many open questions about the breadth and size of soluble problems remain. We demonstrate the capability of probabilistic computing made of a stochastic nanodevice network in solving likely NP (non-deterministic polynomial time)-complete number theory problems associated with combinatorial optimization, which can be implemented using a network of optical parametric oscillators. These simulation results show robustness across all problems tested, with great potential to scale to solve substantially larger problems.","PeriodicalId":16781,"journal":{"name":"Journal of Photonics for Energy","volume":"13 1","pages":"028501 - 028501"},"PeriodicalIF":1.5000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Photonics for Energy","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1117/1.JPE.13.028501","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract. Probabilistic computing with p-bits is a powerful, unique paradigm alternative to classical computing and holds experimental advantages over certain forms of quantum computing. Stochastic nanodevices have been experimentally demonstrated to act as artificial neurons in solving certain problems through probabilistic computing. Still, many open questions about the breadth and size of soluble problems remain. We demonstrate the capability of probabilistic computing made of a stochastic nanodevice network in solving likely NP (non-deterministic polynomial time)-complete number theory problems associated with combinatorial optimization, which can be implemented using a network of optical parametric oscillators. These simulation results show robustness across all problems tested, with great potential to scale to solve substantially larger problems.
NP完全数论问题概率计算的数值模拟
摘要p位概率计算是一种强大的、独特的范式,可以替代经典计算,并且比某些形式的量子计算具有实验优势。随机纳米器件已被实验证明可以作为人工神经元,通过概率计算解决某些问题。然而,关于可解决问题的广度和规模仍有许多悬而未决的问题。我们展示了由随机纳米器件网络组成的概率计算能力,用于解决与组合优化相关的可能NP(非确定性多项式时间)完全数论问题,该问题可以使用光学参数振荡器网络实现。这些模拟结果显示了所有测试问题的鲁棒性,具有扩展解决更大问题的巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Photonics for Energy
Journal of Photonics for Energy MATERIALS SCIENCE, MULTIDISCIPLINARY-OPTICS
CiteScore
3.20
自引率
5.90%
发文量
28
审稿时长
>12 weeks
期刊介绍: The Journal of Photonics for Energy publishes peer-reviewed papers covering fundamental and applied research areas focused on the applications of photonics for renewable energy harvesting, conversion, storage, distribution, monitoring, consumption, and efficient usage.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信