Evaluating the effects of different pollution reduction scenarios on the total phosphorus concentration of a mountainous river basin in southwest China using SWAT model: a case study of the Donghe River in Baoshan, Yunnan
{"title":"Evaluating the effects of different pollution reduction scenarios on the total phosphorus concentration of a mountainous river basin in southwest China using SWAT model: a case study of the Donghe River in Baoshan, Yunnan","authors":"Yongjian Wang, Chang-jun Zhu, Chunming Hu, Wenlong Hao","doi":"10.2166/wcc.2023.104","DOIUrl":null,"url":null,"abstract":"\n \n Water quality has become a significant concern in many river basins in China due to both point and non-point source pollution. The SWAT model assessed pollution reduction scenarios and their effects on Donghe River basin water quality in southwest China. The calibrated model evaluated existing point and non-point emissions. Three schemes reduced point sources by 30, 60, and 90% and non-point sources by 25, 50, and 75%, respectively. Simulations analyzed annual and monthly total phosphorus (TP) concentrations under the scenarios. Results showed that the scenarios effectively improved water quality, meeting Class IV TP standards annually. However, TP exceeded standards in dry months (January–April, December) under all scenarios. A certain degree of negative correlation (R = −0.52, P = 0.11) between TP and rainfall suggests rainfall that influences TP. Comprehensive measures are needed to achieve standards year-round. In summary, the study found that reducing emissions improved Donghe water quality overall but more work is required to meet standards during dry periods. Rainfall correlates with and may affect TP. The work emphasizes implementing comprehensive approaches for year-round water quality improvements in the basin.","PeriodicalId":49150,"journal":{"name":"Journal of Water and Climate Change","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2023-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Water and Climate Change","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.2166/wcc.2023.104","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0
Abstract
Water quality has become a significant concern in many river basins in China due to both point and non-point source pollution. The SWAT model assessed pollution reduction scenarios and their effects on Donghe River basin water quality in southwest China. The calibrated model evaluated existing point and non-point emissions. Three schemes reduced point sources by 30, 60, and 90% and non-point sources by 25, 50, and 75%, respectively. Simulations analyzed annual and monthly total phosphorus (TP) concentrations under the scenarios. Results showed that the scenarios effectively improved water quality, meeting Class IV TP standards annually. However, TP exceeded standards in dry months (January–April, December) under all scenarios. A certain degree of negative correlation (R = −0.52, P = 0.11) between TP and rainfall suggests rainfall that influences TP. Comprehensive measures are needed to achieve standards year-round. In summary, the study found that reducing emissions improved Donghe water quality overall but more work is required to meet standards during dry periods. Rainfall correlates with and may affect TP. The work emphasizes implementing comprehensive approaches for year-round water quality improvements in the basin.
期刊介绍:
Journal of Water and Climate Change publishes refereed research and practitioner papers on all aspects of water science, technology, management and innovation in response to climate change, with emphasis on reduction of energy usage.