G. Yergaziyeva, N. Makayeva, M. Anissova, K. Dossumov, M. Mambetova, Z. Shaimerden, A. Niyazbaeva, E. Akkazin
{"title":"Effect of Preparation Method on the Activity of Fe2O3-NiO/γ-Al2O3 Catalyst in Decomposition of Methane","authors":"G. Yergaziyeva, N. Makayeva, M. Anissova, K. Dossumov, M. Mambetova, Z. Shaimerden, A. Niyazbaeva, E. Akkazin","doi":"10.18321/ectj1435","DOIUrl":null,"url":null,"abstract":"The effect of method preparation on the activity of Fe2O3-NiO/γ-Al2O3 catalyst was investigated in process decomposition of methane. Fe2O3-NiO/γ-Al2O3 catalyst was prepared by impregnation and solution combustion methods. The samples were characterized by X-ray phase analysis (XRD), temperature-programmed hydrogen reduction (TPR-H2), BET and Raman spectroscopy. It has been shown that the method of preparation plays an important role in regulating the textural and morphological properties of catalysts and provides a difference in their catalytic activity. The synthesis of the Fe2O3-NiO/γ-Al2O3 catalyst by the solution combustion method, in comparison with the capillary impregnation method, leads to the formation of a large amount of FeNi and FeAl2O4 solid solutions, which ensured good catalytic activity at high temperatures. The Fe2O3-NiO/γ-Al2O3 catalyst synthesized by the solution combustion method demonstrated good activity with a hydrogen yield of 52% within 150 min of the reaction without any deactivation. According to the results of Raman spectroscopy, graphene-like carbon was obtained on the surface of the catalysts. On the catalyst of Fe2O3-NiO/γ-Al2O3 (СI) synthesized by capillary impregnation, 4‒5 layer graphene on Fe2O3-NiO/γ-Al2O3 (SC)-6-7 layer graphene is formed.","PeriodicalId":11795,"journal":{"name":"Eurasian Chemico-Technological Journal","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eurasian Chemico-Technological Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18321/ectj1435","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The effect of method preparation on the activity of Fe2O3-NiO/γ-Al2O3 catalyst was investigated in process decomposition of methane. Fe2O3-NiO/γ-Al2O3 catalyst was prepared by impregnation and solution combustion methods. The samples were characterized by X-ray phase analysis (XRD), temperature-programmed hydrogen reduction (TPR-H2), BET and Raman spectroscopy. It has been shown that the method of preparation plays an important role in regulating the textural and morphological properties of catalysts and provides a difference in their catalytic activity. The synthesis of the Fe2O3-NiO/γ-Al2O3 catalyst by the solution combustion method, in comparison with the capillary impregnation method, leads to the formation of a large amount of FeNi and FeAl2O4 solid solutions, which ensured good catalytic activity at high temperatures. The Fe2O3-NiO/γ-Al2O3 catalyst synthesized by the solution combustion method demonstrated good activity with a hydrogen yield of 52% within 150 min of the reaction without any deactivation. According to the results of Raman spectroscopy, graphene-like carbon was obtained on the surface of the catalysts. On the catalyst of Fe2O3-NiO/γ-Al2O3 (СI) synthesized by capillary impregnation, 4‒5 layer graphene on Fe2O3-NiO/γ-Al2O3 (SC)-6-7 layer graphene is formed.
期刊介绍:
The journal is designed for publication of experimental and theoretical investigation results in the field of chemistry and chemical technology. Among priority fields that emphasized by chemical science are as follows: advanced materials and chemical technologies, current issues of organic synthesis and chemistry of natural compounds, physical chemistry, chemical physics, electro-photo-radiative-plasma chemistry, colloids, nanotechnologies, catalysis and surface-active materials, polymers, biochemistry.