Wellison J.S. Diniz , Kamila O. da Rosa , Polyana C. Tizioto , Gerson B. Mourão , Priscila S.N. de Oliveira , Marcela M. de Souza , Luciana C.A. Regitano
{"title":"FABP1 and SLC2A5 expression levels affect feed efficiency-related traits","authors":"Wellison J.S. Diniz , Kamila O. da Rosa , Polyana C. Tizioto , Gerson B. Mourão , Priscila S.N. de Oliveira , Marcela M. de Souza , Luciana C.A. Regitano","doi":"10.1016/j.aggene.2019.100100","DOIUrl":null,"url":null,"abstract":"<div><p>Improving the efficiency of production to reduce the environmental footprints is pivotal to the sustainability of livestock systems. Despite the advances in cattle feed efficiency (FE) measurement and identification of potential mechanisms involved, much is still unclear regarding the genetic and biological basis of this trait. Nevertheless, lipid and carbohydrate metabolism have been outlined as important in determining efficient and inefficient animals. To address the role of genes partaking in these processes and previously involved with residual feed intake (RFI), we carried out a liver expression profile in Nelore steers (<em>n</em> = 83). Six target genes (<em>FABP1, FADS2, PPP1R26, RGS2, SLC2A5,</em> and <em>UCP2)</em> were measured by qPCR analysis. A general linear mixed model approach was applied to associate them with dry matter intake (DMI), body weight (BW), metabolic BW (MBW, kg), DMI as a percentage of BW (DMI%BW), and average daily gain (ADG, kg/d). Residual feed intake (RFI), feed conversion ratio (FCR), feed efficiency (FE), Kleiber index (KI), and relative growth rate (RGR) were also evaluated. Our results support that increased expression of <em>FABP1</em> gene was associated with enhanced values for RFI and DMI. Likewise, higher expression level of <em>SLC2A5</em> was related to higher KI and RGR. There was no phenotypic correlation between RFI and ADG, BW, and MBW. The positive correlations between <em>FABP1</em> and <em>SLC2A5,</em> and between <em>FABP1</em> and <em>FADS2</em> gene expression suggest a putative co-regulation affecting feed efficiency phenotypes.</p></div>","PeriodicalId":37751,"journal":{"name":"Agri Gene","volume":"15 ","pages":"Article 100100"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.aggene.2019.100100","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agri Gene","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352215119300200","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 3
Abstract
Improving the efficiency of production to reduce the environmental footprints is pivotal to the sustainability of livestock systems. Despite the advances in cattle feed efficiency (FE) measurement and identification of potential mechanisms involved, much is still unclear regarding the genetic and biological basis of this trait. Nevertheless, lipid and carbohydrate metabolism have been outlined as important in determining efficient and inefficient animals. To address the role of genes partaking in these processes and previously involved with residual feed intake (RFI), we carried out a liver expression profile in Nelore steers (n = 83). Six target genes (FABP1, FADS2, PPP1R26, RGS2, SLC2A5, and UCP2) were measured by qPCR analysis. A general linear mixed model approach was applied to associate them with dry matter intake (DMI), body weight (BW), metabolic BW (MBW, kg), DMI as a percentage of BW (DMI%BW), and average daily gain (ADG, kg/d). Residual feed intake (RFI), feed conversion ratio (FCR), feed efficiency (FE), Kleiber index (KI), and relative growth rate (RGR) were also evaluated. Our results support that increased expression of FABP1 gene was associated with enhanced values for RFI and DMI. Likewise, higher expression level of SLC2A5 was related to higher KI and RGR. There was no phenotypic correlation between RFI and ADG, BW, and MBW. The positive correlations between FABP1 and SLC2A5, and between FABP1 and FADS2 gene expression suggest a putative co-regulation affecting feed efficiency phenotypes.
Agri GeneAgricultural and Biological Sciences-Agricultural and Biological Sciences (miscellaneous)
自引率
0.00%
发文量
0
期刊介绍:
Agri Gene publishes papers that focus on the regulation, expression, function and evolution of genes in crop plants, farm animals, and agriculturally important insects and microorganisms. Agri Gene strives to be a diverse journal and topics in multiple fields will be considered for publication so long as their main focus is on agriculturally important organisms (plants, animals, insects, or microorganisms). Although not limited to the following, some examples of potential topics include: Gene discovery and characterization. Genetic markers to guide traditional breeding. Genetic effects of transposable elements. Evolutionary genetics, molecular evolution, population genetics, and phylogenetics. Profiling of gene expression and genetic variation. Biotechnology and crop or livestock improvement. Genetic improvement of biological control microorganisms. Genetic control of secondary metabolic pathways and metabolic enzymes of crop pathogens. Transcription analysis of beneficial or pest insect developmental stages Agri Gene encourages submission of novel manuscripts that present a reasonable level of analysis, functional relevance and/or mechanistic insight. Agri Gene also welcomes papers that have predominantly a descriptive component but improve the essential basis of knowledge for subsequent functional studies, or which provide important confirmation of recently published discoveries provided that the information is new.