Investigation of VGG-16, ResNet-50 and AlexNet Performance for Brain Tumor Detection

IF 1.7 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Tun Azshafarrah Ton Komar Azaharan, A. Mahamad, S. Saon, Muladi, S. Mudjanarko
{"title":"Investigation of VGG-16, ResNet-50 and AlexNet Performance for Brain Tumor Detection","authors":"Tun Azshafarrah Ton Komar Azaharan, A. Mahamad, S. Saon, Muladi, S. Mudjanarko","doi":"10.3991/ijoe.v19i08.38619","DOIUrl":null,"url":null,"abstract":"A brain tumor is a very common and devastating malignant tumor that leads to a shorter lifespan if not detected early enough. Brain tumor classification is a critical step after the tumor has been identified to create an effective treatment plan. This study aims to investigate the three deep learning tools, VGG-16 ResNet50 and AlexNet in order to detect brain tumor using MRI images. The results performance are then evaluated and compared using accuracy, precision and recall criteria. The dataset used contained 155 MRI images which are images with tumors, and 98 of them are non-tumors. The AlexNet model perform extremely well on the dataset with 96.10% accuracy, while VGG-16 achieved 94.16% and ResNet-50 achieved 91.56%. These accuracies positively impact the early detection of tumors before the tumor causes physical side effects such as paralysis and other disabilities.","PeriodicalId":36900,"journal":{"name":"International Journal of Online and Biomedical Engineering","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Online and Biomedical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3991/ijoe.v19i08.38619","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

A brain tumor is a very common and devastating malignant tumor that leads to a shorter lifespan if not detected early enough. Brain tumor classification is a critical step after the tumor has been identified to create an effective treatment plan. This study aims to investigate the three deep learning tools, VGG-16 ResNet50 and AlexNet in order to detect brain tumor using MRI images. The results performance are then evaluated and compared using accuracy, precision and recall criteria. The dataset used contained 155 MRI images which are images with tumors, and 98 of them are non-tumors. The AlexNet model perform extremely well on the dataset with 96.10% accuracy, while VGG-16 achieved 94.16% and ResNet-50 achieved 91.56%. These accuracies positively impact the early detection of tumors before the tumor causes physical side effects such as paralysis and other disabilities.
VGG-16、ResNet-50和AlexNet在脑肿瘤检测中的性能研究
脑瘤是一种非常常见且具有破坏性的恶性肿瘤,如果检测得不够早,会导致寿命缩短。脑肿瘤分类是确定肿瘤后制定有效治疗计划的关键步骤。本研究旨在研究三种深度学习工具VGG-16ResNet50和AlexNet,以便使用MRI图像检测脑肿瘤。然后使用准确性、精密度和召回标准对结果性能进行评估和比较。所使用的数据集包含155张MRI图像,这些图像是肿瘤图像,其中98张是非肿瘤图像。AlexNet模型在数据集上表现非常好,准确率为96.10%,VGG-16达到94.16%,ResNet-50达到91.56%。这些准确率对肿瘤在导致瘫痪和其他残疾等身体副作用之前的早期检测产生了积极影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.00
自引率
46.20%
发文量
143
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信