Y. Sang, Pengkun Liu, W. Xudong, Weiqi Sun, Jianlong Zhao
{"title":"Fluid-structure interaction analysis of the return pipeline in the high-pressure and large-flow-rate hydraulic power system","authors":"Y. Sang, Pengkun Liu, W. Xudong, Weiqi Sun, Jianlong Zhao","doi":"10.1504/pcfd.2021.10034687","DOIUrl":null,"url":null,"abstract":"This paper aims to investigate the dynamic characteristic of the return pipeline in the high-pressure and large-flow-rate hydraulic power system. First, the geometry model of the pipeline is established, and a one-way coupling fluid structure method is introduced. The modal analyses with empty and filled pipelines are performed and compared. Then, the pipeline resonance phenomenon is investigated, and the response frequency is achieved by the fast Fourier transformation (FFT) analysis, the results are inconsistent with the experiments. Besides, the dynamic response of the pipeline is simulated. Dynamic mesh and user define function (UDF) are adopted, and the pipeline vibration and water hammer phenomenon are observed. Finally, the dynamic characteristics of the pipeline under different fluid velocities and wall thickness are investigated. The results show that the pipeline valve-induced vibration cannot be lightened by reducing the fluid inlet velocity but can be significantly mitigated by increasing the wall thickness.","PeriodicalId":54552,"journal":{"name":"Progress in Computational Fluid Dynamics","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2021-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Computational Fluid Dynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1504/pcfd.2021.10034687","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 3
Abstract
This paper aims to investigate the dynamic characteristic of the return pipeline in the high-pressure and large-flow-rate hydraulic power system. First, the geometry model of the pipeline is established, and a one-way coupling fluid structure method is introduced. The modal analyses with empty and filled pipelines are performed and compared. Then, the pipeline resonance phenomenon is investigated, and the response frequency is achieved by the fast Fourier transformation (FFT) analysis, the results are inconsistent with the experiments. Besides, the dynamic response of the pipeline is simulated. Dynamic mesh and user define function (UDF) are adopted, and the pipeline vibration and water hammer phenomenon are observed. Finally, the dynamic characteristics of the pipeline under different fluid velocities and wall thickness are investigated. The results show that the pipeline valve-induced vibration cannot be lightened by reducing the fluid inlet velocity but can be significantly mitigated by increasing the wall thickness.
期刊介绍:
CFD is now considered an indispensable analysis/design tool in an ever-increasing range of industrial applications. Practical flow problems are often so complex that a high level of ingenuity is required. Thus, besides the development work in CFD, innovative CFD applications are also encouraged. PCFD''s ultimate goal is to provide a common platform for model/software developers and users by balanced international/interdisciplinary contributions, disseminating information relating to development/refinement of mathematical and numerical models, software tools and their innovative applications in CFD.
Topics covered include:
-Turbulence-
Two-phase flows-
Heat transfer-
Chemical reactions and combustion-
Acoustics-
Unsteady flows-
Free-surfaces-
Fluid-solid interaction-
Navier-Stokes solution techniques for incompressible and compressible flows-
Discretisation methods and schemes-
Convergence acceleration procedures-
Grid generation and adaptation techniques-
Mesh-free methods-
Distributed computing-
Other relevant topics