Some Inequalities Involving Interpolations Between Arithmetic and Geometric Mean

Q4 Mathematics
Hongliang Zuo, Yuwei Li
{"title":"Some Inequalities Involving Interpolations Between Arithmetic and Geometric Mean","authors":"Hongliang Zuo, Yuwei Li","doi":"10.2478/tmmp-2022-0007","DOIUrl":null,"url":null,"abstract":"Abstract In this article, we mainly study the interpolations between arithmetic mean and geometric mean—power mean, Heron mean and Heinz mean. First, we obtain the improvement and reverse improvement of arithmetic-power mean inequalities by the convexity of the function. We show that the proof of Heron mean inequality due to Yang and Ren: [Some results of Heron mean and Young’s inequalities, J. Inequal. Appl. 2018 (2018), paper no, 172], is not substantial. In addition, we also obtain Heron-Heinz mean inequalities for t ∈ ℝ. Further corresponding operator versions and generalizations are also established.","PeriodicalId":38690,"journal":{"name":"Tatra Mountains Mathematical Publications","volume":"81 1","pages":"93 - 106"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tatra Mountains Mathematical Publications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/tmmp-2022-0007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract In this article, we mainly study the interpolations between arithmetic mean and geometric mean—power mean, Heron mean and Heinz mean. First, we obtain the improvement and reverse improvement of arithmetic-power mean inequalities by the convexity of the function. We show that the proof of Heron mean inequality due to Yang and Ren: [Some results of Heron mean and Young’s inequalities, J. Inequal. Appl. 2018 (2018), paper no, 172], is not substantial. In addition, we also obtain Heron-Heinz mean inequalities for t ∈ ℝ. Further corresponding operator versions and generalizations are also established.
算术均值与几何均值插值的几个不等式
摘要本文主要研究算术均值与几何均值-幂均值、Heron均值与Heinz均值之间的插值。首先,利用函数的凸性,得到了算术幂均值不等式的改进和逆改进。我们证明了由Yang和Ren给出的Heron均值不等式的证明:[关于Heron均值和Young不等式的一些结果,J.不等式。]apple . 2018(2018),论文编号,172],不实质性。此外,我们还得到了t∈h的Heron-Heinz均值不等式。进一步建立相应的算子版本和推广。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Tatra Mountains Mathematical Publications
Tatra Mountains Mathematical Publications Mathematics-Mathematics (all)
CiteScore
1.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信