The Hilton-Spencer Cycle Theorems Via Katona’s Shadow Intersection Theorem

Pub Date : 2022-11-25 DOI:10.7151/dmgt.2365
P. Borg, Carl Feghali
{"title":"The Hilton-Spencer Cycle Theorems Via Katona’s Shadow Intersection Theorem","authors":"P. Borg, Carl Feghali","doi":"10.7151/dmgt.2365","DOIUrl":null,"url":null,"abstract":"Abstract A family 𝒜 of sets is said to be intersecting if every two sets in 𝒜 intersect. An intersecting family is said to be trivial if its sets have a common element. A graph G is said to be r-EKR if at least one of the largest intersecting families of independent r-element sets of G is trivial. Let α (G) and ω (G) denote the independence number and the clique number of G, respectively. Hilton and Spencer recently showed that if G is the vertex-disjoint union of a cycle C raised to the power k and s cycles 1C, . . ., sC raised to the powers k1, . . ., ks, respectively, 1 ≤ r ≤ α (G), and min(ω(C1k1),…,ω(Csks))≥ω(Ck), \\min \\left( {\\omega \\left( {{}_1{C^{k1}}} \\right), \\ldots ,\\omega \\left( {{}_s{C^{ks}}} \\right)} \\right) \\ge \\omega \\left( {{C^k}} \\right), then G is r-EKR. They had shown that the same holds if C is replaced by a path P and the condition on the clique numbers is relaxed to min(ω(C1k1),…,ω(Csks))≥ω(Pk), \\min \\left( {\\omega \\left( {{}_1{C^{k1}}} \\right), \\ldots ,\\omega \\left( {{}_s{C^{ks}}} \\right)} \\right) \\ge \\omega \\left( {{P^k}} \\right), We use the classical Shadow Intersection Theorem of Katona to obtain a significantly shorter proof of each result for the case where the inequality for the minimum clique number is strict.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.7151/dmgt.2365","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract A family 𝒜 of sets is said to be intersecting if every two sets in 𝒜 intersect. An intersecting family is said to be trivial if its sets have a common element. A graph G is said to be r-EKR if at least one of the largest intersecting families of independent r-element sets of G is trivial. Let α (G) and ω (G) denote the independence number and the clique number of G, respectively. Hilton and Spencer recently showed that if G is the vertex-disjoint union of a cycle C raised to the power k and s cycles 1C, . . ., sC raised to the powers k1, . . ., ks, respectively, 1 ≤ r ≤ α (G), and min(ω(C1k1),…,ω(Csks))≥ω(Ck), \min \left( {\omega \left( {{}_1{C^{k1}}} \right), \ldots ,\omega \left( {{}_s{C^{ks}}} \right)} \right) \ge \omega \left( {{C^k}} \right), then G is r-EKR. They had shown that the same holds if C is replaced by a path P and the condition on the clique numbers is relaxed to min(ω(C1k1),…,ω(Csks))≥ω(Pk), \min \left( {\omega \left( {{}_1{C^{k1}}} \right), \ldots ,\omega \left( {{}_s{C^{ks}}} \right)} \right) \ge \omega \left( {{P^k}} \right), We use the classical Shadow Intersection Theorem of Katona to obtain a significantly shorter proof of each result for the case where the inequality for the minimum clique number is strict.
分享
查看原文
Hilton—Spencer循环定理与Katona的阴影交定理
如果一个集合族中的每两个集合都是相交的,就说它们是相交的。如果一个相交族的集合有一个公共元素,我们就说它是平凡族。如果图G的独立的r元素集合的最大相交族中至少有一个是平凡的,则称图G为r-EKR。设α (G)和ω (G)分别表示G的独立数和团数。Hilton和Spencer最近证明,如果G是一个循环C的k次方和s个循环1C,…,sC的k1,…,ks次方的顶点不相交并,分别为1≤r≤α (G),并且min(ω(C1k1),…,ω(Csks))≥ω(Ck), \min\left ({\omega\left (_1C^k1 {{}{{}}}\right), \ldots,\omega\left (_sC^ks {{}{{}}}\right) }\right) \ge\omega\left (C^k {{}}\right),则G为r-EKR。他们已经证明,如果用路径P代替C,并且将团数的条件放宽为min(ω(C1k1),…,ω(Csks))≥ω(Pk), \min\left ({\omega\left (_1C^k1 {{}{{}}}\right), \ldots, \omega\left (_sC^ks {{}{{}}}\right) }\right) \ge\omega\left (P ^k {{}}\right),对于最小团数不等式严格的情况,我们利用经典的卡托纳阴影交定理,得到了每个结果的较短的证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信