Gregory Baxter-Parker, R. R. Gaddam, E. Moltchanova, A. Carr, G. Shaw, S. Chambers, S. Gieseg
{"title":"Oxidative stress and immune cell activation quantification in sepsis and non-sepsis critical care patients by neopterin/7,8-dihydroneopterin analysis","authors":"Gregory Baxter-Parker, R. R. Gaddam, E. Moltchanova, A. Carr, G. Shaw, S. Chambers, S. Gieseg","doi":"10.1515/pteridines-2020-0015","DOIUrl":null,"url":null,"abstract":"Abstract Introduction: Neopterin and 7,8-dihydroneopterin are used as biomarkers of oxidative stress and inflammation, but the effect of kidney function on these measurements has not been extensively explored. We examine the levels of oxidative stress, inflammation and kidney function in intensive patients and compare them to equivalent patients without sepsis. Methods: 34 Intensive care patients were selected for the study, 14 without sepsis and 20 with. Both groups had equivalent levels of trauma, assessed by SAPS II, SOFA, and APACHE II and III scores. Plasma and urinary neopterin and total neopterin (neopterin + 7,8-dihydroneopterin) values were measured. Results: Neopterin and total neopterin were significantly elevated in urine and plasma for multiple days in sepsis versus non-sepsis patients. Plasma neopterin and total neopterin have decreasing relationships with increased eGFR (p<0.008 and p<0.001, respectively). Plasma/urinary neopterin and total neopterin ratios demonstrate that total neopterin flux is more influenced by eGFR than neopterin, with significantce of p<0.02 and p<0.0002 respectively. Conclusion: Sepsis patients present with greater levels of oxidative stress and immune system activation than non-sepsis patients of equal levels of trauma, as measured by neopterin and total neopterin. eGFR may need to be taken into account when accessing the level of inflammation from urinary neopterin measurements.","PeriodicalId":20792,"journal":{"name":"Pteridines","volume":"31 1","pages":"68 - 82"},"PeriodicalIF":0.5000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/pteridines-2020-0015","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pteridines","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1515/pteridines-2020-0015","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 3
Abstract
Abstract Introduction: Neopterin and 7,8-dihydroneopterin are used as biomarkers of oxidative stress and inflammation, but the effect of kidney function on these measurements has not been extensively explored. We examine the levels of oxidative stress, inflammation and kidney function in intensive patients and compare them to equivalent patients without sepsis. Methods: 34 Intensive care patients were selected for the study, 14 without sepsis and 20 with. Both groups had equivalent levels of trauma, assessed by SAPS II, SOFA, and APACHE II and III scores. Plasma and urinary neopterin and total neopterin (neopterin + 7,8-dihydroneopterin) values were measured. Results: Neopterin and total neopterin were significantly elevated in urine and plasma for multiple days in sepsis versus non-sepsis patients. Plasma neopterin and total neopterin have decreasing relationships with increased eGFR (p<0.008 and p<0.001, respectively). Plasma/urinary neopterin and total neopterin ratios demonstrate that total neopterin flux is more influenced by eGFR than neopterin, with significantce of p<0.02 and p<0.0002 respectively. Conclusion: Sepsis patients present with greater levels of oxidative stress and immune system activation than non-sepsis patients of equal levels of trauma, as measured by neopterin and total neopterin. eGFR may need to be taken into account when accessing the level of inflammation from urinary neopterin measurements.
期刊介绍:
Pteridines is an open acess international quarterly journal dealing with all aspects of pteridine research. Pteridines are heterocyclic fused ring compounds involved in a wide range of biological functions from the color on butterfly wings to cofactors in enzyme catalysis to essential vitamins. Of the pteridines, 5,6,7,8-tetrahydrobiopterin is the necessary cofactor of several aromatic amino acid monoxygenases, the nitric oxide synthases and glyceryl ether monoxygenase (GEMO). Neopterin plays an essential role in the immune system and is an important biomarker in laboratory medicine for diseases such as HIV, cardiovascular disease, malignant tumors, among others.
Topics:
-Neopterin, dihydroneopterin, monapterin-
Biopterin, tetrahydrobiopterin-
Folates, antifolates, riboflavin-
Phenylalanine, tyrosine, phenylketonuria, serotonin, adrenalin, noradrenalin, L-DOPA, dopamine, related biogenic amines-
Phenylalanine hydroxylase, tyrosine hydroxylase, tryptophan hydroxylase, nitric oxide synthases (iNOS), alkylglycerol monooxygenase (AGMO), dihydropterin reductase, sepiapterin reductase-
Homocysteine, mediators of inflammation, redox systems, iron.