{"title":"High energy solutions of general Kirchhoff type equations without the Ambrosetti-Rabinowitz type condition","authors":"Jian Zhang, Hui Liu, J. Zuo","doi":"10.1515/anona-2022-0311","DOIUrl":null,"url":null,"abstract":"Abstract In this article, we study the following general Kirchhoff type equation: − M ∫ R 3 ∣ ∇ u ∣ 2 d x Δ u + u = a ( x ) f ( u ) in R 3 , -M\\left(\\mathop{\\int }\\limits_{{{\\mathbb{R}}}^{3}}| \\nabla u{| }^{2}{\\rm{d}}x\\right)\\Delta u+u=a\\left(x)f\\left(u)\\hspace{1em}{\\rm{in}}\\hspace{0.33em}{{\\mathbb{R}}}^{3}, where inf R + M > 0 {\\inf }_{{{\\mathbb{R}}}^{+}}M\\gt 0 and f f is a superlinear subcritical term. By using the Pohozǎev manifold, we obtain the existence of high energy solutions of the aforementioned equation without the well-known Ambrosetti-Rabinowitz type condition.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/anona-2022-0311","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 4
Abstract
Abstract In this article, we study the following general Kirchhoff type equation: − M ∫ R 3 ∣ ∇ u ∣ 2 d x Δ u + u = a ( x ) f ( u ) in R 3 , -M\left(\mathop{\int }\limits_{{{\mathbb{R}}}^{3}}| \nabla u{| }^{2}{\rm{d}}x\right)\Delta u+u=a\left(x)f\left(u)\hspace{1em}{\rm{in}}\hspace{0.33em}{{\mathbb{R}}}^{3}, where inf R + M > 0 {\inf }_{{{\mathbb{R}}}^{+}}M\gt 0 and f f is a superlinear subcritical term. By using the Pohozǎev manifold, we obtain the existence of high energy solutions of the aforementioned equation without the well-known Ambrosetti-Rabinowitz type condition.