Philip E. Brown, Krystian Czapiga, Arun Jotshi, Y. Kanza, Velin Kounev, Poornima Suresh
{"title":"Planning Wireless Backhaul Links by Testing Line of Sight and Fresnel Zone Clearance","authors":"Philip E. Brown, Krystian Czapiga, Arun Jotshi, Y. Kanza, Velin Kounev, Poornima Suresh","doi":"10.1145/3517382","DOIUrl":null,"url":null,"abstract":"Microwave backhaul links are often used as wireless connections between telecommunication towers, in places where deploying optical fibers is impossible or too expensive. The relatively high frequency of microwaves increases their ability to transfer information at a high rate, but it also makes them susceptible to spatial obstructions and interference. Hence, when deploying wireless links, there are two conflicting considerations. First, the antennas height, selected from the available slots on each tower, should be as low as possible. Second, there should be a line of sight (LoS) between the antennas, and a buffer around the LoS defined by the first Fresnel zone should be clear of obstacles. To compute antenna heights, a planning system for wireless links has to maintain an elevation model, efficiently discover obstacles between towers, and execute Fresnel-zone clearance tests over a 3D model of the deployment area. In this article we present a system and algorithms for computing the height of antennas, by testing LoS and clearance of Fresnel zones. The system handles the following requirements: (1) the need to cover large areas, e.g., all of the USA, (2) big distance between towers, e.g., 100 kilometers, and (3) computing batches of thousands of pairs within a few minutes. We introduce three novel algorithms for efficient computation of antenna heights, we show how to effectively model and manage the large-scale geospatial data needed for the planning, and we present the results of tests over real-world settings.","PeriodicalId":43641,"journal":{"name":"ACM Transactions on Spatial Algorithms and Systems","volume":"9 1","pages":"1 - 30"},"PeriodicalIF":1.2000,"publicationDate":"2022-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Spatial Algorithms and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3517382","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"REMOTE SENSING","Score":null,"Total":0}
引用次数: 3
Abstract
Microwave backhaul links are often used as wireless connections between telecommunication towers, in places where deploying optical fibers is impossible or too expensive. The relatively high frequency of microwaves increases their ability to transfer information at a high rate, but it also makes them susceptible to spatial obstructions and interference. Hence, when deploying wireless links, there are two conflicting considerations. First, the antennas height, selected from the available slots on each tower, should be as low as possible. Second, there should be a line of sight (LoS) between the antennas, and a buffer around the LoS defined by the first Fresnel zone should be clear of obstacles. To compute antenna heights, a planning system for wireless links has to maintain an elevation model, efficiently discover obstacles between towers, and execute Fresnel-zone clearance tests over a 3D model of the deployment area. In this article we present a system and algorithms for computing the height of antennas, by testing LoS and clearance of Fresnel zones. The system handles the following requirements: (1) the need to cover large areas, e.g., all of the USA, (2) big distance between towers, e.g., 100 kilometers, and (3) computing batches of thousands of pairs within a few minutes. We introduce three novel algorithms for efficient computation of antenna heights, we show how to effectively model and manage the large-scale geospatial data needed for the planning, and we present the results of tests over real-world settings.
期刊介绍:
ACM Transactions on Spatial Algorithms and Systems (TSAS) is a scholarly journal that publishes the highest quality papers on all aspects of spatial algorithms and systems and closely related disciplines. It has a multi-disciplinary perspective in that it spans a large number of areas where spatial data is manipulated or visualized (regardless of how it is specified - i.e., geometrically or textually) such as geography, geographic information systems (GIS), geospatial and spatiotemporal databases, spatial and metric indexing, location-based services, web-based spatial applications, geographic information retrieval (GIR), spatial reasoning and mining, security and privacy, as well as the related visual computing areas of computer graphics, computer vision, geometric modeling, and visualization where the spatial, geospatial, and spatiotemporal data is central.