On weakly Turán-good graphs

Pub Date : 2022-07-25 DOI:10.7151/dmgt.2510
Dániel Gerbner
{"title":"On weakly Turán-good graphs","authors":"Dániel Gerbner","doi":"10.7151/dmgt.2510","DOIUrl":null,"url":null,"abstract":"Given graphs $H$ and $F$ with $\\chi(H)<\\chi(F)$, we say that $H$ is weakly $F$-Tur\\'an-good if among $n$-vertex $F$-free graphs, a $(\\chi(F)-1)$-partite graph contains the most copies of $H$. Let $H$ be a bipartite graph that contains a complete bipartite subgraph $K$ such that each vertex of $H$ is adjacent to a vertex of $K$. We show that $H$ is weakly $K_3$-Tur\\'an-good, improving a very recent asymptotic bound due to Grzesik, Gy\\H ori, Salia and Tompkins. They also showed that for any $r$ there exist graphs that are not weakly $K_r$-Tur\\'an-good. We show that for any non-bipartite $F$ there exists graphs that are not weakly $F$-Tur\\'an-good. We also show examples of graphs that are $C_{2k+1}$-Tur\\'an-good but not $C_{2\\ell+1}$-Tur\\'an-good for every $k>\\ell$.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.7151/dmgt.2510","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Given graphs $H$ and $F$ with $\chi(H)<\chi(F)$, we say that $H$ is weakly $F$-Tur\'an-good if among $n$-vertex $F$-free graphs, a $(\chi(F)-1)$-partite graph contains the most copies of $H$. Let $H$ be a bipartite graph that contains a complete bipartite subgraph $K$ such that each vertex of $H$ is adjacent to a vertex of $K$. We show that $H$ is weakly $K_3$-Tur\'an-good, improving a very recent asymptotic bound due to Grzesik, Gy\H ori, Salia and Tompkins. They also showed that for any $r$ there exist graphs that are not weakly $K_r$-Tur\'an-good. We show that for any non-bipartite $F$ there exists graphs that are not weakly $F$-Tur\'an-good. We also show examples of graphs that are $C_{2k+1}$-Tur\'an-good but not $C_{2\ell+1}$-Tur\'an-good for every $k>\ell$.
分享
查看原文
关于弱Turán-good图
给定图$H$和$F$与$\chi(H)\ well $。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信