{"title":"Symmetrical and Non-symmetrical Variants of Three-Way Correspondence Analysis for Ordered Variables","authors":"Rosaria Lombardo Eric J Beh, P. Kroonenberg","doi":"10.1214/20-sts814","DOIUrl":null,"url":null,"abstract":". In the framework of multi-way data analysis, this paper presents symmetrical and non-symmetrical variants of three-way correspondence analysis that are suitable when a three-way contingency table is constructed from ordinal variables. In particular, such variables may be modelled using general recurrence formulae to generate orthogonal polynomial vectors in-stead of singular vectors coming from one of the possible three-way extensions of the singular value decomposition. As we shall see, these polynomials, that until now have been used to decompose two-way contingency tables with ordered variables, also constitute an alternative orthogonal basis for modelling symmetrical, non-symmetrical associations and predictabilities in three-way contingency tables. Consequences with respect to modelling and graphing will be highlighted.","PeriodicalId":51172,"journal":{"name":"Statistical Science","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Science","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/20-sts814","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 2
Abstract
. In the framework of multi-way data analysis, this paper presents symmetrical and non-symmetrical variants of three-way correspondence analysis that are suitable when a three-way contingency table is constructed from ordinal variables. In particular, such variables may be modelled using general recurrence formulae to generate orthogonal polynomial vectors in-stead of singular vectors coming from one of the possible three-way extensions of the singular value decomposition. As we shall see, these polynomials, that until now have been used to decompose two-way contingency tables with ordered variables, also constitute an alternative orthogonal basis for modelling symmetrical, non-symmetrical associations and predictabilities in three-way contingency tables. Consequences with respect to modelling and graphing will be highlighted.
期刊介绍:
The central purpose of Statistical Science is to convey the richness, breadth and unity of the field by presenting the full range of contemporary statistical thought at a moderate technical level, accessible to the wide community of practitioners, researchers and students of statistics and probability.