CANTOR SETS AND FIELDS OF REALS

IF 0.4 Q4 MATHEMATICS
G. Kuba
{"title":"CANTOR SETS AND FIELDS OF REALS","authors":"G. Kuba","doi":"10.57016/mv-ywug8949","DOIUrl":null,"url":null,"abstract":"Our main result is a construction of four families ${\\cal C}_1,{\\cal C}_2,{\\cal B}_1,{\\cal B}_2$ which are equipollent with the power set of ${\\Bbb R}$ and satisfy the following properties. (i) The members of the families are proper subfields $K$ of ${\\Bbb R}$ where ${\\Bbb R}$ is algebraic over $K$. (ii) Each field in ${\\cal C}_1\\cup{\\cal C}_2$ contains a {\\it Cantor set}. (iii) Each field in ${\\cal B}_1\\cup{\\cal B}_2$ is a {\\it Bernstein set}. (iv) All fields in ${\\cal C}_1\\cup{\\cal B}_1$ are isomorphic. (v) If $K,L$ are fields in ${\\cal C}_2\\cup{\\cal B}_2$ then $K$ is isomorphic to some subfield of $L$ only in the trivial case $K=L$.","PeriodicalId":54181,"journal":{"name":"Matematicki Vesnik","volume":"1 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2020-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matematicki Vesnik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.57016/mv-ywug8949","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Our main result is a construction of four families ${\cal C}_1,{\cal C}_2,{\cal B}_1,{\cal B}_2$ which are equipollent with the power set of ${\Bbb R}$ and satisfy the following properties. (i) The members of the families are proper subfields $K$ of ${\Bbb R}$ where ${\Bbb R}$ is algebraic over $K$. (ii) Each field in ${\cal C}_1\cup{\cal C}_2$ contains a {\it Cantor set}. (iii) Each field in ${\cal B}_1\cup{\cal B}_2$ is a {\it Bernstein set}. (iv) All fields in ${\cal C}_1\cup{\cal B}_1$ are isomorphic. (v) If $K,L$ are fields in ${\cal C}_2\cup{\cal B}_2$ then $K$ is isomorphic to some subfield of $L$ only in the trivial case $K=L$.
实数的康托尔集与域
我们的主要结果是构造了四个族${\cal C}_1,{\cal C}_2,{\cal B}_1,{\cal B}_2$,它们等价于${\Bbb R}$的幂集,并且满足以下性质。(i)族的成员是${\Bbb R}$的真子域$K$,其中${\Bbb R}$是对$K$的代数。(ii) ${\cal C}_1\cup{\cal C}_2$中的每个字段包含一个{\it康托集}。(iii) ${\cal B}_1\cup{\cal B}_2$中的每个字段都是一个{\it Bernstein集}。(iv) ${\cal C}_1\cup{\cal B}_1$中的所有字段都是同构的。(v)如果$K,L$是${\cal C}_2\cup{\cal B}_2$中的域,则$K$仅在$K=L$的平凡情况下才同构于$L$的子域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Matematicki Vesnik
Matematicki Vesnik MATHEMATICS-
CiteScore
1.10
自引率
0.00%
发文量
7
审稿时长
25 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信