Effects of dynamic mold temperature control on melt pressure, cellular structure, and mechanical properties of microcellular injection-molded parts: An experimental study

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Guiwei Dong, Guoqun Zhao, Junji Hou, Guilong Wang, Y. Mu
{"title":"Effects of dynamic mold temperature control on melt pressure, cellular structure, and mechanical properties of microcellular injection-molded parts: An experimental study","authors":"Guiwei Dong, Guoqun Zhao, Junji Hou, Guilong Wang, Y. Mu","doi":"10.1177/0262489319871741","DOIUrl":null,"url":null,"abstract":"In this work, the effects of dynamic mold temperature control (DMTC) on melt pressure, cellular structure, and mechanical properties of microcellular injection molding (MIM)-molded parts are investigated experimentally. It is found that with the increase of the mold temperature, the duration of foaming pressure in the cooling stage increases. Meanwhile, the average cell diameter and cell diameter dispersion increases as well as the cell density decreases in MIM molded parts. The turning point of mold temperature after which the foaming pressure in the cooling stage and the cellular structure in MIM molded parts generate a significant change is around the glass transition temperature of the used plastic material. Under DMTC conditions, with the increase of mold temperature, the tensile strength, flexural strength, and impact strength of MIM molded specimens of single gate without weld line change a little, while the tensile strength, flexural strength of MIM molded specimens of double gates with weld line increase obviously. When the mold temperature increases to 120°C and over, the tensile strength, flexural strength of MIM molded specimens of double gates with weld line reach an equivalent level of specimens of single gate without weld line.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2019-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/0262489319871741","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/0262489319871741","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, the effects of dynamic mold temperature control (DMTC) on melt pressure, cellular structure, and mechanical properties of microcellular injection molding (MIM)-molded parts are investigated experimentally. It is found that with the increase of the mold temperature, the duration of foaming pressure in the cooling stage increases. Meanwhile, the average cell diameter and cell diameter dispersion increases as well as the cell density decreases in MIM molded parts. The turning point of mold temperature after which the foaming pressure in the cooling stage and the cellular structure in MIM molded parts generate a significant change is around the glass transition temperature of the used plastic material. Under DMTC conditions, with the increase of mold temperature, the tensile strength, flexural strength, and impact strength of MIM molded specimens of single gate without weld line change a little, while the tensile strength, flexural strength of MIM molded specimens of double gates with weld line increase obviously. When the mold temperature increases to 120°C and over, the tensile strength, flexural strength of MIM molded specimens of double gates with weld line reach an equivalent level of specimens of single gate without weld line.
模具动态温度控制对微孔注射成型件熔体压力、孔结构和力学性能的影响:实验研究
本文通过实验研究了动态模具温度控制(DMTC)对微孔注射成型(MIM)零件熔体压力、蜂窝结构和力学性能的影响。研究发现,随着模具温度的升高,冷却阶段发泡压力的持续时间增加。同时,MIM成型件中的平均晶胞直径和晶胞直径分散度增加,晶胞密度降低。模具温度的转折点在所用塑料材料的玻璃化转变温度附近,在此之后,冷却阶段的发泡压力和MIM成型部件中的蜂窝状结构产生显著变化。在DMTC条件下,随着模具温度的升高,无焊缝的单浇口MIM成型试样的拉伸强度、弯曲强度和冲击强度变化不大,而有焊缝的双浇口MIM成形试样的抗拉强度和弯曲强度明显增加。当模具温度提高到120°C及以上时,有焊缝的双浇口MIM成型试样的拉伸强度、弯曲强度达到了与无焊缝的单浇口试样相当的水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信