Informative g-Priors for Mixed Models

IF 0.9 Q4 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Stats Pub Date : 2023-01-16 DOI:10.3390/stats6010011
Yu-Fang Chien, Haiming Zhou, T. Hanson, Theodore C. Lystig
{"title":"Informative g-Priors for Mixed Models","authors":"Yu-Fang Chien, Haiming Zhou, T. Hanson, Theodore C. Lystig","doi":"10.3390/stats6010011","DOIUrl":null,"url":null,"abstract":"Zellner’s objective g-prior has been widely used in linear regression models due to its simple interpretation and computational tractability in evaluating marginal likelihoods. However, the g-prior further allows portioning the prior variability explained by the linear predictor versus that of pure noise. In this paper, we propose a novel yet remarkably simple g-prior specification when a subject matter expert has information on the marginal distribution of the response yi. The approach is extended for use in mixed models with some surprising but intuitive results. Simulation studies are conducted to compare the model fitting under the proposed g-prior with that under other existing priors.","PeriodicalId":93142,"journal":{"name":"Stats","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stats","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/stats6010011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 1

Abstract

Zellner’s objective g-prior has been widely used in linear regression models due to its simple interpretation and computational tractability in evaluating marginal likelihoods. However, the g-prior further allows portioning the prior variability explained by the linear predictor versus that of pure noise. In this paper, we propose a novel yet remarkably simple g-prior specification when a subject matter expert has information on the marginal distribution of the response yi. The approach is extended for use in mixed models with some surprising but intuitive results. Simulation studies are conducted to compare the model fitting under the proposed g-prior with that under other existing priors.
混合模型的信息g先验
Zellner的目标g先验由于其解释简单,计算易于处理,在线性回归模型中得到了广泛的应用。然而,g-prior进一步允许将线性预测器与纯噪声解释的先验可变性进行分割。在本文中,我们提出了一个新颖但非常简单的g-先验规范,当主题专家有关于响应yi的边际分布的信息时。将该方法扩展到混合模型中,得到了一些令人惊讶但直观的结果。通过仿真研究,将所提出的g-prior下的模型拟合与其他已有的prior下的模型拟合进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
0
审稿时长
7 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信