Scattering in a partially open waveguide: the forward problem

IF 1.4 4区 数学 Q2 MATHEMATICS, APPLIED
L. Bourgeois, S. Fliss, Jean-François Fritsch, C. Hazard, A. Recoquillay
{"title":"Scattering in a partially open waveguide: the forward problem","authors":"L. Bourgeois, S. Fliss, Jean-François Fritsch, C. Hazard, A. Recoquillay","doi":"10.1093/imamat/hxad004","DOIUrl":null,"url":null,"abstract":"\n This paper is dedicated to an acoustic scattering problem in a two-dimensional partially open waveguide, in the sense that the left part of the waveguide is closed, that is with a bounded cross-section, while the right part is bounded in the transverse direction by some Perfectly Matched Layers that mimic the situation of an open waveguide, that is with an unbounded cross-section. We prove well-posedness of such scattering problem in the Fredholm sense (uniqueness implies existence) and exhibit the asymptotic behaviour of the solution in the longitudinal direction with the help of the Kondratiev approach. Having in mind the numerical computation of the solution, we also propose some transparent boundary conditions in such longitudinal direction, based on Dirichlet-to-Neumann operators. After proving that such artificial conditions actually enable us to approximate the exact solution, some numerical experiments illustrate the quality of such approximation.","PeriodicalId":56297,"journal":{"name":"IMA Journal of Applied Mathematics","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2023-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IMA Journal of Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imamat/hxad004","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1

Abstract

This paper is dedicated to an acoustic scattering problem in a two-dimensional partially open waveguide, in the sense that the left part of the waveguide is closed, that is with a bounded cross-section, while the right part is bounded in the transverse direction by some Perfectly Matched Layers that mimic the situation of an open waveguide, that is with an unbounded cross-section. We prove well-posedness of such scattering problem in the Fredholm sense (uniqueness implies existence) and exhibit the asymptotic behaviour of the solution in the longitudinal direction with the help of the Kondratiev approach. Having in mind the numerical computation of the solution, we also propose some transparent boundary conditions in such longitudinal direction, based on Dirichlet-to-Neumann operators. After proving that such artificial conditions actually enable us to approximate the exact solution, some numerical experiments illustrate the quality of such approximation.
部分开放波导中的散射:前向问题
本文致力于研究二维部分开放波导中的声散射问题,即波导的左侧部分是封闭的,即具有有界横截面,而右侧部分在横向方向上由一些模拟开放波导情况的完全匹配层限定,即具有无界横截面。我们证明了这种散射问题在Fredholm意义上的适定性(唯一性意味着存在),并借助Kondratiev方法展示了解在纵向上的渐近性。考虑到解的数值计算,我们还基于Dirichlet到Neumann算子,提出了在这种纵向方向上的一些透明边界条件。在证明了这种人为条件实际上使我们能够近似精确解之后,一些数值实验说明了这种近似的质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.30
自引率
8.30%
发文量
32
审稿时长
24 months
期刊介绍: The IMA Journal of Applied Mathematics is a direct successor of the Journal of the Institute of Mathematics and its Applications which was started in 1965. It is an interdisciplinary journal that publishes research on mathematics arising in the physical sciences and engineering as well as suitable articles in the life sciences, social sciences, and finance. Submissions should address interesting and challenging mathematical problems arising in applications. A good balance between the development of the application(s) and the analysis is expected. Papers that either use established methods to address solved problems or that present analysis in the absence of applications will not be considered. The journal welcomes submissions in many research areas. Examples are: continuum mechanics materials science and elasticity, including boundary layer theory, combustion, complex flows and soft matter, electrohydrodynamics and magnetohydrodynamics, geophysical flows, granular flows, interfacial and free surface flows, vortex dynamics; elasticity theory; linear and nonlinear wave propagation, nonlinear optics and photonics; inverse problems; applied dynamical systems and nonlinear systems; mathematical physics; stochastic differential equations and stochastic dynamics; network science; industrial applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信