L. Bourgeois, S. Fliss, Jean-François Fritsch, C. Hazard, A. Recoquillay
{"title":"Scattering in a partially open waveguide: the forward problem","authors":"L. Bourgeois, S. Fliss, Jean-François Fritsch, C. Hazard, A. Recoquillay","doi":"10.1093/imamat/hxad004","DOIUrl":null,"url":null,"abstract":"\n This paper is dedicated to an acoustic scattering problem in a two-dimensional partially open waveguide, in the sense that the left part of the waveguide is closed, that is with a bounded cross-section, while the right part is bounded in the transverse direction by some Perfectly Matched Layers that mimic the situation of an open waveguide, that is with an unbounded cross-section. We prove well-posedness of such scattering problem in the Fredholm sense (uniqueness implies existence) and exhibit the asymptotic behaviour of the solution in the longitudinal direction with the help of the Kondratiev approach. Having in mind the numerical computation of the solution, we also propose some transparent boundary conditions in such longitudinal direction, based on Dirichlet-to-Neumann operators. After proving that such artificial conditions actually enable us to approximate the exact solution, some numerical experiments illustrate the quality of such approximation.","PeriodicalId":56297,"journal":{"name":"IMA Journal of Applied Mathematics","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2023-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IMA Journal of Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imamat/hxad004","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1
Abstract
This paper is dedicated to an acoustic scattering problem in a two-dimensional partially open waveguide, in the sense that the left part of the waveguide is closed, that is with a bounded cross-section, while the right part is bounded in the transverse direction by some Perfectly Matched Layers that mimic the situation of an open waveguide, that is with an unbounded cross-section. We prove well-posedness of such scattering problem in the Fredholm sense (uniqueness implies existence) and exhibit the asymptotic behaviour of the solution in the longitudinal direction with the help of the Kondratiev approach. Having in mind the numerical computation of the solution, we also propose some transparent boundary conditions in such longitudinal direction, based on Dirichlet-to-Neumann operators. After proving that such artificial conditions actually enable us to approximate the exact solution, some numerical experiments illustrate the quality of such approximation.
期刊介绍:
The IMA Journal of Applied Mathematics is a direct successor of the Journal of the Institute of Mathematics and its Applications which was started in 1965. It is an interdisciplinary journal that publishes research on mathematics arising in the physical sciences and engineering as well as suitable articles in the life sciences, social sciences, and finance. Submissions should address interesting and challenging mathematical problems arising in applications. A good balance between the development of the application(s) and the analysis is expected. Papers that either use established methods to address solved problems or that present analysis in the absence of applications will not be considered.
The journal welcomes submissions in many research areas. Examples are: continuum mechanics materials science and elasticity, including boundary layer theory, combustion, complex flows and soft matter, electrohydrodynamics and magnetohydrodynamics, geophysical flows, granular flows, interfacial and free surface flows, vortex dynamics; elasticity theory; linear and nonlinear wave propagation, nonlinear optics and photonics; inverse problems; applied dynamical systems and nonlinear systems; mathematical physics; stochastic differential equations and stochastic dynamics; network science; industrial applications.