{"title":"To what extent are item discrimination values realistic? A new index for two-dimensional structures","authors":"A. Kılıç, Ibrahim Uysal","doi":"10.21449/ijate.1098757","DOIUrl":null,"url":null,"abstract":"Most researchers investigate the corrected item-total correlation of items when analyzing item discrimination in multi-dimensional structures under the Classical Test Theory, which might lead to underestimating item discrimination, thereby removing items from the test. Researchers might investigate the corrected item-total correlation with the factors to which that item belongs; however, getting a general overview of the entire test is impossible. Based on this problem, this study aims to recommend a new index to investigate item discrimination in two-dimensional structures through a Monte Carlo simulation. The new item discrimination index is evaluated by identifying sample size, item discrimination value, inter-factor correlation, and the number of categories. Based upon the results of the study it can be claimed that the proposed item discrimination index proves acceptable performance for two-dimensional structures. Accordingly, using this new item discrimination index could be recommended to researchers when investigating item discrimination in two-dimensional structures.","PeriodicalId":42417,"journal":{"name":"International Journal of Assessment Tools in Education","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Assessment Tools in Education","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21449/ijate.1098757","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
引用次数: 0
Abstract
Most researchers investigate the corrected item-total correlation of items when analyzing item discrimination in multi-dimensional structures under the Classical Test Theory, which might lead to underestimating item discrimination, thereby removing items from the test. Researchers might investigate the corrected item-total correlation with the factors to which that item belongs; however, getting a general overview of the entire test is impossible. Based on this problem, this study aims to recommend a new index to investigate item discrimination in two-dimensional structures through a Monte Carlo simulation. The new item discrimination index is evaluated by identifying sample size, item discrimination value, inter-factor correlation, and the number of categories. Based upon the results of the study it can be claimed that the proposed item discrimination index proves acceptable performance for two-dimensional structures. Accordingly, using this new item discrimination index could be recommended to researchers when investigating item discrimination in two-dimensional structures.