New Linear Codes over $GF(3)$, $GF(11)$, and $GF(13)$

Q3 Mathematics
N. Aydin, Derek Foret
{"title":"New Linear Codes over $GF(3)$, $GF(11)$, and $GF(13)$","authors":"N. Aydin, Derek Foret","doi":"10.13069/JACODESMATH.508968","DOIUrl":null,"url":null,"abstract":"Explicit construction of linear codes with best possible parameters is one of the major and challenging problems in coding theory. Cyclic codes and their various generalizations, such as quasi-twisted (QT) codes, are known to contain many codes with best known parameters. Despite the fact that these classes of codes have been extensively searched, we have been able to refine existing search algorithms to discover many new linear codes over the alphabets $\\mathbb{F}_{3}$, $\\mathbb{F}_{11}$, and $\\mathbb{F}_{13}$ with better parameters. A total of 38 new linear codes over the three alphabets are presented.","PeriodicalId":37029,"journal":{"name":"Journal of Algebra Combinatorics Discrete Structures and Applications","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra Combinatorics Discrete Structures and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13069/JACODESMATH.508968","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 6

Abstract

Explicit construction of linear codes with best possible parameters is one of the major and challenging problems in coding theory. Cyclic codes and their various generalizations, such as quasi-twisted (QT) codes, are known to contain many codes with best known parameters. Despite the fact that these classes of codes have been extensively searched, we have been able to refine existing search algorithms to discover many new linear codes over the alphabets $\mathbb{F}_{3}$, $\mathbb{F}_{11}$, and $\mathbb{F}_{13}$ with better parameters. A total of 38 new linear codes over the three alphabets are presented.
$GF(3)$、$GF(11)$和$GF(13)上的新线性码$
具有最佳可能参数的线性码的显式构造是编码理论中的一个主要且具有挑战性的问题。循环码及其各种推广,如准扭曲(QT)码,已知包含许多具有最佳参数的码。尽管这些代码类别已经被广泛搜索,但我们已经能够改进现有的搜索算法,以发现字母表$\mathbb上的许多新的线性代码{F}_{3} $,$\mathbb{F}_{11} $和$\mathbb{F}_{13} 具有更好参数的$。给出了三个字母表上总共38个新的线性码。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
12
审稿时长
5 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信