Seismic signatures of atmospheric disturbances in the Western Pacific as a tool for reconstruction of their dynamics

IF 0.5 4区 地球科学 Q4 GEOCHEMISTRY & GEOPHYSICS
V. Zobin
{"title":"Seismic signatures of atmospheric disturbances in the Western Pacific as a tool for reconstruction of their dynamics","authors":"V. Zobin","doi":"10.22201/igeof.00167169p.2021.60.4.2124","DOIUrl":null,"url":null,"abstract":"  \nThe wind and products of snowfalls and rainfalls touching the ground generate the seismic signals. During the decades, the study of seismic signatures of atmospheric disturbances, cyclones, was based on analysis of the ambient seismic noise in the low-frequency range which allowed identification of cyclones and location of the storm position. The methodology of monitoring of the atmospheric events using the short-period seismic signals recorded by a sensor installed at a height of about 4 km above sea level at the summit of dormant volcano Nevado de Colima is proposed. The methodology includes the indication of the seismic signatures of atmospheric disturbances on the daily helicorder displays of seismic signals with following analysis of waveforms, produced by the impact of rainfalls and snowfalls with the ground surface, and their Fourier spectral characteristics. Then, the reconstruction of the passage of the atmospheric events, based on the power spectral densities of the one-hour seismic records, which is performed mutually with the satellite observations. The methodology was applied to study the passage of hurricane Dora and its preceding tropical storm (June 2017) and the cold front system number 25 (January 2018). There were indicated the periods of actions of tropical storm, hurricane, and two stages of the cold front on the helicorder images. Then the characteristic waveforms for each period were selected. Analysis of the spectral characteristics of these waveforms demonstrated that the rainfalls, occurring during the tropical storm, hurricane and the initial stage of the cold front passage, generated the seismic signals within the frequency range between 1.0-1.8 Hz while the snowfall during the second stage of the cold front passage generated the seismic signals within the frequency range between 2.6 and 3.7 Hz. The reconstruction of dynamics of the passage of the atmospheric events based on the power spectral densities of the one-hour seismic records allowed to see the comparable intensity of tropical storm and hurricane, and two stages of the cold front. These results demonstrate a possibility for monitoring the passage of atmospheric disturbances in real time or to perform the reconstruction the dynamics of these events during past time using the short-period seismic signals recorded at the high heights. \n ","PeriodicalId":12624,"journal":{"name":"Geofisica Internacional","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geofisica Internacional","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.22201/igeof.00167169p.2021.60.4.2124","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

  The wind and products of snowfalls and rainfalls touching the ground generate the seismic signals. During the decades, the study of seismic signatures of atmospheric disturbances, cyclones, was based on analysis of the ambient seismic noise in the low-frequency range which allowed identification of cyclones and location of the storm position. The methodology of monitoring of the atmospheric events using the short-period seismic signals recorded by a sensor installed at a height of about 4 km above sea level at the summit of dormant volcano Nevado de Colima is proposed. The methodology includes the indication of the seismic signatures of atmospheric disturbances on the daily helicorder displays of seismic signals with following analysis of waveforms, produced by the impact of rainfalls and snowfalls with the ground surface, and their Fourier spectral characteristics. Then, the reconstruction of the passage of the atmospheric events, based on the power spectral densities of the one-hour seismic records, which is performed mutually with the satellite observations. The methodology was applied to study the passage of hurricane Dora and its preceding tropical storm (June 2017) and the cold front system number 25 (January 2018). There were indicated the periods of actions of tropical storm, hurricane, and two stages of the cold front on the helicorder images. Then the characteristic waveforms for each period were selected. Analysis of the spectral characteristics of these waveforms demonstrated that the rainfalls, occurring during the tropical storm, hurricane and the initial stage of the cold front passage, generated the seismic signals within the frequency range between 1.0-1.8 Hz while the snowfall during the second stage of the cold front passage generated the seismic signals within the frequency range between 2.6 and 3.7 Hz. The reconstruction of dynamics of the passage of the atmospheric events based on the power spectral densities of the one-hour seismic records allowed to see the comparable intensity of tropical storm and hurricane, and two stages of the cold front. These results demonstrate a possibility for monitoring the passage of atmospheric disturbances in real time or to perform the reconstruction the dynamics of these events during past time using the short-period seismic signals recorded at the high heights.  
西太平洋大气扰动的地震特征作为重建其动力学的工具
风和降雪和降雨的产物接触地面产生地震信号。在过去的几十年里,对大气扰动气旋的地震特征的研究是基于对低频范围内的环境地震噪声的分析,从而可以识别气旋和确定风暴的位置。提出了一种利用安装在海拔约4 km的休眠火山顶的传感器记录的短周期地震信号监测大气事件的方法。该方法包括在地震信号的每日螺旋显示上显示大气扰动的地震特征,并对降雨和降雪对地面的影响产生的波形进行分析,以及它们的傅立叶谱特征。然后,基于1小时地震记录的功率谱密度,与卫星观测相互进行重建大气事件的通道。该方法应用于研究飓风多拉及其前热带风暴(2017年6月)和冷锋系统25号(2018年1月)的路径。螺旋图像显示了热带风暴、飓风和冷锋两个阶段的活动周期。然后选取每个周期的特征波形。对这些波形的频谱特征分析表明,热带风暴、飓风和冷锋通道初始阶段的降雨产生了1.0 ~ 1.8 Hz频率范围内的地震信号,冷锋通道第二阶段的降雪产生了2.6 ~ 3.7 Hz频率范围内的地震信号。基于一小时地震记录的功率谱密度重建大气事件通过的动力学,可以看到热带风暴和飓风的可比强度,以及冷锋的两个阶段。这些结果表明,利用在高海拔记录的短周期地震信号实时监测大气扰动的通过或在过去一段时间内重建这些事件的动态是可能的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Geofisica Internacional
Geofisica Internacional 地学-地球化学与地球物理
CiteScore
1.00
自引率
0.00%
发文量
23
审稿时长
>12 weeks
期刊介绍: Geofísica internacional is a quarterly scientific journal that publishes original papers that contain topics that are interesting for the geophysical community. The journal publishes research and review articles, brief notes and reviews books about seismology, volcanology, spacial sciences, hydrology and exploration, paleomagnetism and tectonic, and physical oceanography.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信