Sum Connectivity Index Under the Cartesian and Strong Products Graph of Monogenic Semigroup

IF 0.7 Q2 MATHEMATICS
R. Rajadurai, G. Sheeja
{"title":"Sum Connectivity Index Under the Cartesian and Strong Products Graph of Monogenic Semigroup","authors":"R. Rajadurai, G. Sheeja","doi":"10.28924/2291-8639-21-2023-94","DOIUrl":null,"url":null,"abstract":"This field’s main feature is to implement the sum connectivity index method. This sum connectivity index method can solve the monogenic semigroups under the cartesian and strong products. We will define for an undirected graph as SCI(GMS)=Σuv∈E(GMS) [dGMS(u)+dGMS(v)]−1/2, where dGMS(u) and dGMS(v) are degree of u and v in GMS respectively. Further, we investigate two different algorithms concerning topological index for computing cartesian and strong products of a monogenic semigroup with a detailed example.","PeriodicalId":45204,"journal":{"name":"International Journal of Analysis and Applications","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Analysis and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.28924/2291-8639-21-2023-94","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

This field’s main feature is to implement the sum connectivity index method. This sum connectivity index method can solve the monogenic semigroups under the cartesian and strong products. We will define for an undirected graph as SCI(GMS)=Σuv∈E(GMS) [dGMS(u)+dGMS(v)]−1/2, where dGMS(u) and dGMS(v) are degree of u and v in GMS respectively. Further, we investigate two different algorithms concerning topological index for computing cartesian and strong products of a monogenic semigroup with a detailed example.
单基因半群的笛卡尔强积图下的和连通性指数
该字段的主要特点是实现sum连通性索引方法。该和连通性指标法可以求解笛卡尔积和强积下的单基因半群。我们将无向图定义为SCI(GMS)=Σuv∈E(GMS) [dGMS(u)+dGMS(v)]−1/2,其中dGMS(u)和dGMS(v)分别是GMS中u和v的度。进一步研究了单基因半群的笛卡儿积和强积的两种不同的拓扑指标计算算法,并给出了具体的算例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
10.00%
发文量
60
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信