O. Orlovskaya, S. Vakula, K. Yatsevich, L. Khotyleva, A. Kilchevsky
{"title":"Productivity and grain nutritional value traits in wheat genotypes with different NAM-B1 gene allelic variations","authors":"O. Orlovskaya, S. Vakula, K. Yatsevich, L. Khotyleva, A. Kilchevsky","doi":"10.29235/1561-8323-2022-66-5-517-524","DOIUrl":null,"url":null,"abstract":"The identification of a functional NAM-B1 allele associated with a high content of grain protein and essential microelements in wheat relatives increased the distant hybridization significance for bread wheat nutritional value. The allelic polymorphism of the NAM-B1 gene in 22 wheat lines with a genetic material of T. dicoccoides, T. dicoccum, T. spelta, T. kiharаe and their parental forms and the effects of NAM-B1 gene allelic variations on the content of grain protein and essential microelements and productivity traits (vegetation period 2017–2021) were evaluated. The functional NAM-B1 allele was identified only in the samples of wheat relatives among the parental forms. All parental varieties and most of introgressive lines (77.3 %) had a non-functional allele. The genotypes with the functional NAM-B1 allele were characterized by a higher plant height and tillering, but by lower spike productivity compared to the non-functional allele genotypes. The presence of the functional NAM-B1 allele provided a high level of grain protein and zinc content and never decreased significantly a thousand-kernel weight across all studied environments. The functional NAM-B1 allele introgression could be a resource for improving the grain wheat nutritional value.","PeriodicalId":41825,"journal":{"name":"DOKLADY NATSIONALNOI AKADEMII NAUK BELARUSI","volume":" ","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2022-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"DOKLADY NATSIONALNOI AKADEMII NAUK BELARUSI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29235/1561-8323-2022-66-5-517-524","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 1
Abstract
The identification of a functional NAM-B1 allele associated with a high content of grain protein and essential microelements in wheat relatives increased the distant hybridization significance for bread wheat nutritional value. The allelic polymorphism of the NAM-B1 gene in 22 wheat lines with a genetic material of T. dicoccoides, T. dicoccum, T. spelta, T. kiharаe and their parental forms and the effects of NAM-B1 gene allelic variations on the content of grain protein and essential microelements and productivity traits (vegetation period 2017–2021) were evaluated. The functional NAM-B1 allele was identified only in the samples of wheat relatives among the parental forms. All parental varieties and most of introgressive lines (77.3 %) had a non-functional allele. The genotypes with the functional NAM-B1 allele were characterized by a higher plant height and tillering, but by lower spike productivity compared to the non-functional allele genotypes. The presence of the functional NAM-B1 allele provided a high level of grain protein and zinc content and never decreased significantly a thousand-kernel weight across all studied environments. The functional NAM-B1 allele introgression could be a resource for improving the grain wheat nutritional value.