W. Jannah, Danang Yudistiro, M. Asrofi, Mahros Darsin, Ahmad Rendi Maulana
{"title":"Effect of Temperature, Holding Time, and Addition of Sn on Density on Metal Injection Molding Sintering Process","authors":"W. Jannah, Danang Yudistiro, M. Asrofi, Mahros Darsin, Ahmad Rendi Maulana","doi":"10.5614/j.eng.technol.sci.2023.55.2.4","DOIUrl":null,"url":null,"abstract":"Metal injection molding (MIM) is a metal forming technique that combines powder metallurgy with plastic injection molding. MIM is very efficient in manufacturing small and complex products in large quantities. The MIM process has four steps: mixing, debinding, injection molding, and sintering. This research was conducted to determine the effect of variations in Sn addition, temperature, and holding time on the density of Al-PP products after the sintering process. Density is mass per volume so to find out the volume of Al-PP products, the use of a 3D scanner was attempted along with the EinScan application and a mesh mixer. The Taguchi method was used for data processing to determine the influence of variations in Sn addition, temperature, and holding time on density. The calculation of the percentage contribution showed that variations in Sn addition, temperature, and holding time affected density by 47%, 21%, and 3%. Also, 2% Sn addition yielded a reasonably good microstructure formation compared to without Sn addition and 1% Sn addition, where many voids remained in the specimen (the more significant the voids, the lower the density).","PeriodicalId":15689,"journal":{"name":"Journal of Engineering and Technological Sciences","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2023-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineering and Technological Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5614/j.eng.technol.sci.2023.55.2.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Metal injection molding (MIM) is a metal forming technique that combines powder metallurgy with plastic injection molding. MIM is very efficient in manufacturing small and complex products in large quantities. The MIM process has four steps: mixing, debinding, injection molding, and sintering. This research was conducted to determine the effect of variations in Sn addition, temperature, and holding time on the density of Al-PP products after the sintering process. Density is mass per volume so to find out the volume of Al-PP products, the use of a 3D scanner was attempted along with the EinScan application and a mesh mixer. The Taguchi method was used for data processing to determine the influence of variations in Sn addition, temperature, and holding time on density. The calculation of the percentage contribution showed that variations in Sn addition, temperature, and holding time affected density by 47%, 21%, and 3%. Also, 2% Sn addition yielded a reasonably good microstructure formation compared to without Sn addition and 1% Sn addition, where many voids remained in the specimen (the more significant the voids, the lower the density).
期刊介绍:
Journal of Engineering and Technological Sciences welcomes full research articles in the area of Engineering Sciences from the following subject areas: Aerospace Engineering, Biotechnology, Chemical Engineering, Civil Engineering, Electrical Engineering, Engineering Physics, Environmental Engineering, Industrial Engineering, Information Engineering, Mechanical Engineering, Material Science and Engineering, Manufacturing Processes, Microelectronics, Mining Engineering, Petroleum Engineering, and other application of physical, biological, chemical and mathematical sciences in engineering. Authors are invited to submit articles that have not been published previously and are not under consideration elsewhere.