Crystal structure of 5-HT2AR in complex with risperidone

IF 16.8 1区 生物学
T. K. Kimura, H. Asada, A. Inoue, F. Kadji, D. Im, C. Mori, T. Arakawa, K. Hirata, Y. Nomura, N. Nomura, J. Aoki, S. Iwata, T. Shimamura
{"title":"Crystal structure of 5-HT2AR in complex with risperidone","authors":"T. K. Kimura, H. Asada, A. Inoue, F. Kadji, D. Im, C. Mori, T. Arakawa, K. Hirata, Y. Nomura, N. Nomura, J. Aoki, S. Iwata, T. Shimamura","doi":"10.2210/PDB6A93/PDB","DOIUrl":null,"url":null,"abstract":"Many drugs target the serotonin 2A receptor (5-HT2AR), including second-generation antipsychotics that also target the dopamine D2 receptor (D2R). These drugs often produce severe side effects due to non-selective binding to other aminergic receptors. Here, we report the structures of human 5-HT2AR in complex with the second-generation antipsychotics risperidone and zotepine. These antipsychotics effectively stabilize the inactive conformation by forming direct contacts with the residues at the bottom of the ligand-binding pocket, the movements of which are important for receptor activation. 5-HT2AR is structurally similar to 5-HT2CR but possesses a unique side-extended cavity near the orthosteric binding site. A docking study and mutagenic studies suggest that a highly 5-HT2AR-selective antagonist binds the side-extended cavity. The conformation of the ligand-binding pocket in 5-HT2AR significantly differs around extracellular loops 1 and 2 from that in D2R. These findings are beneficial for the rational design of safer antipsychotics and 5-HT2AR-selective drugs.","PeriodicalId":18836,"journal":{"name":"Nature Structural &Molecular Biology","volume":"26 1","pages":"121-128"},"PeriodicalIF":16.8000,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Structural &Molecular Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2210/PDB6A93/PDB","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32

Abstract

Many drugs target the serotonin 2A receptor (5-HT2AR), including second-generation antipsychotics that also target the dopamine D2 receptor (D2R). These drugs often produce severe side effects due to non-selective binding to other aminergic receptors. Here, we report the structures of human 5-HT2AR in complex with the second-generation antipsychotics risperidone and zotepine. These antipsychotics effectively stabilize the inactive conformation by forming direct contacts with the residues at the bottom of the ligand-binding pocket, the movements of which are important for receptor activation. 5-HT2AR is structurally similar to 5-HT2CR but possesses a unique side-extended cavity near the orthosteric binding site. A docking study and mutagenic studies suggest that a highly 5-HT2AR-selective antagonist binds the side-extended cavity. The conformation of the ligand-binding pocket in 5-HT2AR significantly differs around extracellular loops 1 and 2 from that in D2R. These findings are beneficial for the rational design of safer antipsychotics and 5-HT2AR-selective drugs.
5-HT2AR与利培酮复合物的晶体结构
许多药物靶向血清素2A受体(5-HT2AR),包括也靶向多巴胺D2受体(D2R)的第二代抗精神病药物。由于与其他胺能受体的非选择性结合,这些药物通常会产生严重的副作用。在此,我们报道了人类5-HT2AR与第二代抗精神病药物利培酮和唑替平复合物的结构。这些抗精神病药物通过与配体结合口袋底部的残基形成直接接触,有效地稳定了非活性构象,配体结合口袋的运动对受体激活很重要。5-HT2AR在结构上类似于5-HT2CR,但在正位结合位点附近具有独特的侧延伸空腔。对接研究和诱变研究表明,一种高度5-HT2AR-选择性拮抗剂与侧延伸腔结合。5-HT2AR中配体结合口袋的构象在细胞外环1和2周围与D2R中的构象显著不同。这些发现有利于合理设计更安全的抗精神病药物和5-HT2AR选择性药物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Structural &Molecular Biology
Nature Structural &Molecular Biology 生物-生化与分子生物学
自引率
1.80%
发文量
160
期刊介绍: Nature Structural & Molecular Biology is a monthly journal that focuses on the functional and mechanistic understanding of how molecular components in a biological process work together. It serves as an integrated forum for structural and molecular studies. The journal places a strong emphasis on the functional and mechanistic understanding of how molecular components in a biological process work together. Some specific areas of interest include the structure and function of proteins, nucleic acids, and other macromolecules, DNA replication, repair and recombination, transcription, regulation of transcription and translation, protein folding, processing and degradation, signal transduction, and intracellular signaling.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信