Hyperbolic Unfoldings of Minimal Hypersurfaces

Pub Date : 2018-05-06 DOI:10.1515/agms-2018-0006
J. Lohkamp
{"title":"Hyperbolic Unfoldings of Minimal Hypersurfaces","authors":"J. Lohkamp","doi":"10.1515/agms-2018-0006","DOIUrl":null,"url":null,"abstract":"Abstract We study the intrinsic geometry of area minimizing hypersurfaces from a new point of view by relating this subject to quasiconformal geometry. Namely, for any such hypersurface H we define and construct a so-called S-structure. This new and natural concept reveals some unexpected geometric and analytic properties of H and its singularity set Ʃ. Moreover, it can be used to prove the existence of hyperbolic unfoldings of H\\Ʃ. These are canonical conformal deformations of H\\Ʃ into complete Gromov hyperbolic spaces of bounded geometry with Gromov boundary homeomorphic to Ʃ. These new concepts and results naturally extend to the larger class of almost minimizers.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2018-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/agms-2018-0006","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/agms-2018-0006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Abstract We study the intrinsic geometry of area minimizing hypersurfaces from a new point of view by relating this subject to quasiconformal geometry. Namely, for any such hypersurface H we define and construct a so-called S-structure. This new and natural concept reveals some unexpected geometric and analytic properties of H and its singularity set Ʃ. Moreover, it can be used to prove the existence of hyperbolic unfoldings of H\Ʃ. These are canonical conformal deformations of H\Ʃ into complete Gromov hyperbolic spaces of bounded geometry with Gromov boundary homeomorphic to Ʃ. These new concepts and results naturally extend to the larger class of almost minimizers.
分享
查看原文
最小超曲面的双曲展开
摘要将面积最小化超曲面与拟共形几何联系起来,从一个新的角度研究了面积最小化超曲面的内在几何问题。也就是说,对于任何这样的超曲面H,我们定义并构造一个所谓的s结构。这个新的自然概念揭示了H及其奇异集Ʃ的一些意想不到的几何和解析性质。此外,它还可以用来证明H\Ʃ双曲展开的存在性。这些是H\Ʃ在具有格罗莫夫边界同纯于Ʃ的有界几何的完全格罗莫夫双曲空间中的正则共形变形。这些新的概念和结果自然延伸到更大的一类几乎最小化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信