Weighted Equilibrium States at Zero Temperature

IF 0.4 Q4 MATHEMATICS
A. Mesón, F. Vericat
{"title":"Weighted Equilibrium States at Zero Temperature","authors":"A. Mesón, F. Vericat","doi":"10.1080/1726037X.2020.1856340","DOIUrl":null,"url":null,"abstract":"Abstract Weighted thermodynamic and multifractal formalism for finite alphabet subshifts have been presented by Barral and Feng (Asian J. Math, 16, 319–352, 2012). Here we analyze the problem of finding weighted equilibrium states for infinite countable shifts. Also we study the problem of ”zero temperature” which consists into consider a sequence of equilibrium states depending of a parameter, interpreted in a Statistical Mechanics context as ”the inverse of the temperature”, and prove the existence of accumulation points of such a sequence.","PeriodicalId":42788,"journal":{"name":"Journal of Dynamical Systems and Geometric Theories","volume":"18 1","pages":"241 - 259"},"PeriodicalIF":0.4000,"publicationDate":"2020-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/1726037X.2020.1856340","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Dynamical Systems and Geometric Theories","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/1726037X.2020.1856340","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Weighted thermodynamic and multifractal formalism for finite alphabet subshifts have been presented by Barral and Feng (Asian J. Math, 16, 319–352, 2012). Here we analyze the problem of finding weighted equilibrium states for infinite countable shifts. Also we study the problem of ”zero temperature” which consists into consider a sequence of equilibrium states depending of a parameter, interpreted in a Statistical Mechanics context as ”the inverse of the temperature”, and prove the existence of accumulation points of such a sequence.
零度下的加权平衡态
Barral和Feng给出了有限字母子位移的加权热力学和多重分形形式(数学学报,16,319-352,2012)。本文分析了求无限可数位移的加权平衡态的问题。此外,我们还研究了“零温度”问题,该问题包括考虑依赖于参数的平衡状态序列,在统计力学中解释为“温度的逆”,并证明了这种序列的累加点的存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
7
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信