A Modified Model-Selection Criteria in a Generalised Estimating Equation for Latent Class Regression Models

IF 0.3 Q4 MATHEMATICS
J. Purnomo, Chih-Rung Chen, Guangping Huang
{"title":"A Modified Model-Selection Criteria in a Generalised Estimating Equation for Latent Class Regression Models","authors":"J. Purnomo, Chih-Rung Chen, Guangping Huang","doi":"10.11113/MATEMATIKA.V35.N2.1175","DOIUrl":null,"url":null,"abstract":"In recent years, generalised estimating equations (GEEs) have played an important role in many fields of research, such as biomedicine. In this paper, we use GEEs for latent class regression (LCR) with covariate effects on underlying and measured variables. However, there are only a few model-selection criteria in GEEs. The widely known Akaike information criterion (AIC) cannot be used directly, since AIC is a full likelihood-based model, whereas GEEs are nonlikelihood based. Hence, we propose a modification to AIC in GEEs for (LCR) models, where the likelihood is replaced by quasi-likelihood, and a proper adjustment is made by giving a penalty term. The data of the modified hospital elder life program (mHELP) project are used to illustrate our method.","PeriodicalId":43733,"journal":{"name":"Matematika","volume":" ","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2019-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matematika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11113/MATEMATIKA.V35.N2.1175","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, generalised estimating equations (GEEs) have played an important role in many fields of research, such as biomedicine. In this paper, we use GEEs for latent class regression (LCR) with covariate effects on underlying and measured variables. However, there are only a few model-selection criteria in GEEs. The widely known Akaike information criterion (AIC) cannot be used directly, since AIC is a full likelihood-based model, whereas GEEs are nonlikelihood based. Hence, we propose a modification to AIC in GEEs for (LCR) models, where the likelihood is replaced by quasi-likelihood, and a proper adjustment is made by giving a penalty term. The data of the modified hospital elder life program (mHELP) project are used to illustrate our method.
潜在类回归模型广义估计方程中模型选择准则的改进
近年来,广义估计方程在生物医学等许多研究领域发挥了重要作用。在本文中,我们将GEE用于潜在类回归(LCR),该回归对潜在变量和测量变量具有协变量效应。然而,GEE中只有少数几个车型选择标准。众所周知的Akaike信息准则(AIC)不能直接使用,因为AIC是一个基于全似然的模型,而GEE是基于非似然的。因此,我们建议对(LCR)模型的GEEs中的AIC进行修改,用拟似然代替似然,并通过给出惩罚项进行适当调整。利用改进的医院老年生活计划(mHELP)项目的数据来说明我们的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Matematika
Matematika MATHEMATICS-
自引率
25.00%
发文量
0
审稿时长
24 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信