E-Commerce User Type Recognition Based on Access Sequence Similarity

IF 2 4区 管理学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS
Xiaodong Qian, Min Li
{"title":"E-Commerce User Type Recognition Based on Access Sequence Similarity","authors":"Xiaodong Qian, Min Li","doi":"10.1080/10919392.2020.1742552","DOIUrl":null,"url":null,"abstract":"ABSTRACT In order to measure the similarity of non-equal length and non-numerical sequence effectively, in this paper, the access sequence similarity calculation method was proposed based on the characteristics of e-commerce user access sequence. The sliding window method was improved by increasing the similarity calculation of nodes and optimizing the sliding similarity calculation method. The key factor of Edit Distance on Real Sequences was optimized. It mainly includes the calculation method of increasing the similarity of nodes and optimizing the calculation method of sliding similarity; the calculation method of subcost in the editing distance of real sequences is optimized. Then, the optimized Edit Distance on Real Sequences was embedded into the improved sliding window method to replace the original distance calculation method. Based on the access sequence similarity calculation results, the clustering algorithm was used to get the e-commerce users type. The experimental results showed the following facts: The improved access sequence similarity algorithm can measure the similarity of non-numerical and non-equal length sequences more accurately; based on the similarity of access sequences, it is possible to divide the types of e-commerce users more effectively, besides the e-commerce users are mainly composed of young men, users’ online time shows obvious fragmentation characteristics, their online browsing behavior obeys long tail distribution, they still primarily buy hot items, and the e-commerce users can be divided into six categories.","PeriodicalId":54777,"journal":{"name":"Journal of Organizational Computing and Electronic Commerce","volume":"30 1","pages":"209 - 223"},"PeriodicalIF":2.0000,"publicationDate":"2020-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/10919392.2020.1742552","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Organizational Computing and Electronic Commerce","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1080/10919392.2020.1742552","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 2

Abstract

ABSTRACT In order to measure the similarity of non-equal length and non-numerical sequence effectively, in this paper, the access sequence similarity calculation method was proposed based on the characteristics of e-commerce user access sequence. The sliding window method was improved by increasing the similarity calculation of nodes and optimizing the sliding similarity calculation method. The key factor of Edit Distance on Real Sequences was optimized. It mainly includes the calculation method of increasing the similarity of nodes and optimizing the calculation method of sliding similarity; the calculation method of subcost in the editing distance of real sequences is optimized. Then, the optimized Edit Distance on Real Sequences was embedded into the improved sliding window method to replace the original distance calculation method. Based on the access sequence similarity calculation results, the clustering algorithm was used to get the e-commerce users type. The experimental results showed the following facts: The improved access sequence similarity algorithm can measure the similarity of non-numerical and non-equal length sequences more accurately; based on the similarity of access sequences, it is possible to divide the types of e-commerce users more effectively, besides the e-commerce users are mainly composed of young men, users’ online time shows obvious fragmentation characteristics, their online browsing behavior obeys long tail distribution, they still primarily buy hot items, and the e-commerce users can be divided into six categories.
基于访问序列相似度的电子商务用户类型识别
摘要为了有效地测量非等长非数字序列的相似性,本文根据电子商务用户访问序列的特点,提出了访问序列相似性计算方法。通过增加节点的相似性计算和优化滑动相似性计算方法,对滑动窗口方法进行了改进。对实序列编辑距离的关键因素进行了优化。主要包括增加节点相似度的计算方法和优化滑动相似度的计算方式;优化了实序列编辑距离中子成本的计算方法。然后,将优化后的真实序列编辑距离嵌入到改进的滑动窗口方法中,以取代原来的距离计算方法。基于访问序列相似度计算结果,采用聚类算法得到电子商务用户类型。实验结果表明:改进的访问序列相似性算法可以更准确地测量非数值和非等长序列的相似性;基于访问序列的相似性,可以更有效地划分电子商务用户的类型,除了电子商务用户主要由年轻男性组成外,用户的在线时间呈现出明显的碎片化特征,他们的在线浏览行为服从长尾分布,他们仍然主要购买热门商品,电子商务用户可以分为六类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Organizational Computing and Electronic Commerce
Journal of Organizational Computing and Electronic Commerce 工程技术-计算机:跨学科应用
CiteScore
5.80
自引率
17.20%
发文量
7
审稿时长
>12 weeks
期刊介绍: The aim of the Journal of Organizational Computing and Electronic Commerce (JOCEC) is to publish quality, fresh, and innovative work that will make a difference for future research and practice rather than focusing on well-established research areas. JOCEC publishes original research that explores the relationships between computer/communication technology and the design, operations, and performance of organizations. This includes implications of the technologies for organizational structure and dynamics, technological advances to keep pace with changes of organizations and their environments, emerging technological possibilities for improving organizational performance, and the many facets of electronic business. Theoretical, experimental, survey, and design science research are all welcome and might look at: • E-commerce • Collaborative commerce • Interorganizational systems • Enterprise systems • Supply chain technologies • Computer-supported cooperative work • Computer-aided coordination • Economics of organizational computing • Technologies for organizational learning • Behavioral aspects of organizational computing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信