FIBONACCI AND SUPER FIBONACCI GRACEFUL LABELLINGS OF SOME TYPES OF GRAPHS

Q3 Engineering
M. Semenyuta
{"title":"FIBONACCI AND SUPER FIBONACCI GRACEFUL LABELLINGS OF SOME TYPES OF GRAPHS","authors":"M. Semenyuta","doi":"10.34229/0572-2691-2021-1-10","DOIUrl":null,"url":null,"abstract":"We consider the basic theoretical information regarding the Fibonacci graceful graphs. An injective function is said a Fibonacci graceful labelling of a graph of a size , if it induces a bijective function on the set of edges , where by the rule , for any adjacent vertices A graph that allows such labelling is called Fibonacci graceful. In this paper, we introduce the concept of super Fibonacci graceful labelling, narrowing the set of vertex labels, i.e. Four types of problems to be studied are selected. In the problem of the first type, the following question is raised: is there a graph that allows a certain kind of labelling, and under what conditions does this take place? The problem of the second type is the problem of construction: it is necessary, for a given system of requirements for the graph, to construct (at least one) its labelling that would satisfy this system. The following two types of problems relate to enumeration problems: for a given graph, determine the number of different Fibonacci and / or super Fibonacci graceful labellings; build all the different labellings of a given kind. As a result of solving these problems, functions were found that generate Fibonacci and super Fibonacci graceful labellings for graphs of cyclic structure; necessary and sufficient conditions for the existence of Fibonacci graceful labelling for disjunctive union of cycles, super Fibonacci graceful labelling for cycles, Eulerian graphs are obtained; the number of non-equivalent labellings of the cycle is determined; conditions for the existence of a super Fibonacci graceful labelling of a one-point connection of arbitrary connected super Fibonacci graceful graphs … …, are presented","PeriodicalId":54874,"journal":{"name":"Journal of Automation and Information Sciences","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Automation and Information Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34229/0572-2691-2021-1-10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the basic theoretical information regarding the Fibonacci graceful graphs. An injective function is said a Fibonacci graceful labelling of a graph of a size , if it induces a bijective function on the set of edges , where by the rule , for any adjacent vertices A graph that allows such labelling is called Fibonacci graceful. In this paper, we introduce the concept of super Fibonacci graceful labelling, narrowing the set of vertex labels, i.e. Four types of problems to be studied are selected. In the problem of the first type, the following question is raised: is there a graph that allows a certain kind of labelling, and under what conditions does this take place? The problem of the second type is the problem of construction: it is necessary, for a given system of requirements for the graph, to construct (at least one) its labelling that would satisfy this system. The following two types of problems relate to enumeration problems: for a given graph, determine the number of different Fibonacci and / or super Fibonacci graceful labellings; build all the different labellings of a given kind. As a result of solving these problems, functions were found that generate Fibonacci and super Fibonacci graceful labellings for graphs of cyclic structure; necessary and sufficient conditions for the existence of Fibonacci graceful labelling for disjunctive union of cycles, super Fibonacci graceful labelling for cycles, Eulerian graphs are obtained; the number of non-equivalent labellings of the cycle is determined; conditions for the existence of a super Fibonacci graceful labelling of a one-point connection of arbitrary connected super Fibonacci graceful graphs … …, are presented
某些类型图的斐波那契和超斐波那契优美标记
我们考虑了斐波那契优美图的基本理论信息。一个内射函数被称为一个大小的图的斐波那契优美标记,如果它在一组边上诱导出一个双射函数,根据规则,对于任何相邻的顶点,一个允许这样标记的图被称为斐波那契优美标记。在本文中,我们引入了超斐波那契优美标记的概念,缩小了顶点标记的集合,即选择了四类要研究的问题。在第一种类型的问题中,提出了以下问题:是否存在允许某种标记的图形,以及在什么条件下会发生这种标记?第二类问题是构造问题:对于给定的图的需求系统,构造(至少一个)满足该系统的标记是必要的。以下两类问题与枚举问题有关:对于给定的图,确定不同斐波那契和/或超斐波那契优美标记的数量;构建给定类型的所有不同标签。通过对这些问题的求解,找到了对循环结构图生成斐波那契和超斐波那契优美标记的函数;得到了环的析取并、环的超Fibonacci优美标记、欧拉图存在的充分必要条件;确定循环中非等效标签的数量;给出了任意连通超斐波那契优美图... ...的一点连接的超斐波那契优美标记存在的条件
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Automation and Information Sciences
Journal of Automation and Information Sciences AUTOMATION & CONTROL SYSTEMS-
自引率
0.00%
发文量
0
审稿时长
6-12 weeks
期刊介绍: This journal contains translations of papers from the Russian-language bimonthly "Mezhdunarodnyi nauchno-tekhnicheskiy zhurnal "Problemy upravleniya i informatiki". Subjects covered include information sciences such as pattern recognition, forecasting, identification and evaluation of complex systems, information security, fault diagnosis and reliability. In addition, the journal also deals with such automation subjects as adaptive, stochastic and optimal control, control and identification under uncertainty, robotics, and applications of user-friendly computers in management of economic, industrial, biological, and medical systems. The Journal of Automation and Information Sciences will appeal to professionals in control systems, communications, computers, engineering in biology and medicine, instrumentation and measurement, and those interested in the social implications of technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信