{"title":"Game theory in network security for digital twins in industry","authors":"","doi":"10.1016/j.dcan.2023.01.004","DOIUrl":null,"url":null,"abstract":"<div><p>To ensure the safe operation of industrial digital twins network and avoid the harm to the system caused by hacker invasion, a series of discussions on network security issues are carried out based on game theory. From the perspective of the life cycle of network vulnerabilities, mining and repairing vulnerabilities are analyzed by applying evolutionary game theory. The evolution process of knowledge sharing among white hats under various conditions is simulated, and a game model of the vulnerability patch cooperative development strategy among manufacturers is constructed. On this basis, the differential evolution is introduced into the update mechanism of the Wolf Colony Algorithm (WCA) to produce better replacement individuals with greater probability from the perspective of both attack and defense. Through the simulation experiment, it is found that the convergence speed of the probability (<em>X</em>) of white Hat 1 choosing the knowledge sharing policy is related to the probability (<em>x</em><sub>0</sub>) of white Hat 2 choosing the knowledge sharing policy initially, and the probability (<em>y</em><sub>0</sub>) of white hat 2 choosing the knowledge sharing policy initially. When <em>y</em><sub>0</sub> = 0.9, <em>X</em> converges rapidly in a relatively short time. When <em>y</em><sub>0</sub> is constant and <em>x</em><sub>0</sub> is small, the probability curve of the “cooperative development” strategy converges to 0. It is concluded that the higher the trust among the white hat members in the temporary team, the stronger their willingness to share knowledge, which is conducive to the mining of loopholes in the system. The greater the probability of a hacker attacking the vulnerability before it is fully disclosed, the lower the willingness of manufacturers to choose the \"cooperative development\" of vulnerability patches. Applying the improved wolf colony-co-evolution algorithm can obtain the equilibrium solution of the \"attack and defense game model\", and allocate the security protection resources according to the importance of nodes. This study can provide an effective solution to protect the network security for digital twins in the industry.</p></div>","PeriodicalId":48631,"journal":{"name":"Digital Communications and Networks","volume":null,"pages":null},"PeriodicalIF":7.5000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352864823000172/pdfft?md5=e4bd0604e0a430227120098d1040c077&pid=1-s2.0-S2352864823000172-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Communications and Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352864823000172","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
To ensure the safe operation of industrial digital twins network and avoid the harm to the system caused by hacker invasion, a series of discussions on network security issues are carried out based on game theory. From the perspective of the life cycle of network vulnerabilities, mining and repairing vulnerabilities are analyzed by applying evolutionary game theory. The evolution process of knowledge sharing among white hats under various conditions is simulated, and a game model of the vulnerability patch cooperative development strategy among manufacturers is constructed. On this basis, the differential evolution is introduced into the update mechanism of the Wolf Colony Algorithm (WCA) to produce better replacement individuals with greater probability from the perspective of both attack and defense. Through the simulation experiment, it is found that the convergence speed of the probability (X) of white Hat 1 choosing the knowledge sharing policy is related to the probability (x0) of white Hat 2 choosing the knowledge sharing policy initially, and the probability (y0) of white hat 2 choosing the knowledge sharing policy initially. When y0 = 0.9, X converges rapidly in a relatively short time. When y0 is constant and x0 is small, the probability curve of the “cooperative development” strategy converges to 0. It is concluded that the higher the trust among the white hat members in the temporary team, the stronger their willingness to share knowledge, which is conducive to the mining of loopholes in the system. The greater the probability of a hacker attacking the vulnerability before it is fully disclosed, the lower the willingness of manufacturers to choose the "cooperative development" of vulnerability patches. Applying the improved wolf colony-co-evolution algorithm can obtain the equilibrium solution of the "attack and defense game model", and allocate the security protection resources according to the importance of nodes. This study can provide an effective solution to protect the network security for digital twins in the industry.
期刊介绍:
Digital Communications and Networks is a prestigious journal that emphasizes on communication systems and networks. We publish only top-notch original articles and authoritative reviews, which undergo rigorous peer-review. We are proud to announce that all our articles are fully Open Access and can be accessed on ScienceDirect. Our journal is recognized and indexed by eminent databases such as the Science Citation Index Expanded (SCIE) and Scopus.
In addition to regular articles, we may also consider exceptional conference papers that have been significantly expanded. Furthermore, we periodically release special issues that focus on specific aspects of the field.
In conclusion, Digital Communications and Networks is a leading journal that guarantees exceptional quality and accessibility for researchers and scholars in the field of communication systems and networks.