{"title":"Convolution Representation of Traveling Pulses in Reaction-Diffusion Systems","authors":"S. Kawaguchi","doi":"10.1155/2023/1410642","DOIUrl":null,"url":null,"abstract":"Convolution representation manifests itself as an important tool in the reduction of partial differential equations. In this study, we consider the convolution representation of traveling pulses in reaction-diffusion systems. Under the adiabatic approximation of inhibitor, a two-component reaction-diffusion system is reduced to a one-component reaction-diffusion equation with a convolution term. To find the traveling speed in a reaction-diffusion system with a global coupling term, the stability of the standing pulse and the relation between traveling speed and bifurcation parameter are examined. Additionally, we consider the traveling pulses in the kernel-based Turing model. The stability of the spatially homogeneous state and most unstable wave number are examined. The practical utilities of the convolution representation of reaction-diffusion systems are discussed.","PeriodicalId":49111,"journal":{"name":"Advances in Mathematical Physics","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1155/2023/1410642","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Convolution representation manifests itself as an important tool in the reduction of partial differential equations. In this study, we consider the convolution representation of traveling pulses in reaction-diffusion systems. Under the adiabatic approximation of inhibitor, a two-component reaction-diffusion system is reduced to a one-component reaction-diffusion equation with a convolution term. To find the traveling speed in a reaction-diffusion system with a global coupling term, the stability of the standing pulse and the relation between traveling speed and bifurcation parameter are examined. Additionally, we consider the traveling pulses in the kernel-based Turing model. The stability of the spatially homogeneous state and most unstable wave number are examined. The practical utilities of the convolution representation of reaction-diffusion systems are discussed.
期刊介绍:
Advances in Mathematical Physics publishes papers that seek to understand mathematical basis of physical phenomena, and solve problems in physics via mathematical approaches. The journal welcomes submissions from mathematical physicists, theoretical physicists, and mathematicians alike.
As well as original research, Advances in Mathematical Physics also publishes focused review articles that examine the state of the art, identify emerging trends, and suggest future directions for developing fields.