A Feasibility Study on the High-Resolution Regional Reanalysis over Japan Assimilating Only Conventional Observations as an Alternative to the Dynamical Downscaling
IF 2.4 4区 地球科学Q3 METEOROLOGY & ATMOSPHERIC SCIENCES
S. Fukui, T. Iwasaki, Kazuo Saito, H. Seko, M. Kunii
{"title":"A Feasibility Study on the High-Resolution Regional Reanalysis over Japan Assimilating Only Conventional Observations as an Alternative to the Dynamical Downscaling","authors":"S. Fukui, T. Iwasaki, Kazuo Saito, H. Seko, M. Kunii","doi":"10.2151/JMSJ.2018-056","DOIUrl":null,"url":null,"abstract":"The feasibility of regional reanalysis assimilating only conventional observations was investigated as an alternative to dynamical downscaling to estimate the past three-dimensional high-resolution atmospheric fields with long-term homogeneity over about 60 years. The two types of widely applied dynamical downscaling approaches have problems. One, with a serial long-term time-integration, often fails to reproduce synoptic-scale systems and precipitation patterns. The other, with frequent reinitializations, underestimates precipitation due to insufficient spin-up. To address these problems maintaining long-term homogeneity, we proposed the regional reanalysis assimilating only the conventional observations. We examined it by paying special attention to summer precipitation, through one-month experiment before conducting a long-term reanalysis. The system was designed to assimilate surface pressure and radiosonde upper-air observations using the Japan Meteorological Agency’s nonhydrostatic model (NHM) and the local ensemble transform Kalman filter (LETKF). It covered Japan and its surrounding area with a 5-km grid spacing and East Asia with a 25-km grid spacing, applying one-way double nesting in the Japanese 55-year reanalysis (JRA-55). The regional reanalysis overcame the problems with both types of dynamical downscaling approaches. It reproduced actual synoptic-scale systems and precipitation patterns better. It also realistically described spatial variability and precipitation intensity. The 5-km grid spacing regional reanalysis reproduced frequency of heavy precipiJournal of the Meteorological Society of Japan Vol. 96, No. 6 566","PeriodicalId":17476,"journal":{"name":"Journal of the Meteorological Society of Japan","volume":"96 1","pages":"565-585"},"PeriodicalIF":2.4000,"publicationDate":"2018-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2151/JMSJ.2018-056","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Meteorological Society of Japan","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.2151/JMSJ.2018-056","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 8
Abstract
The feasibility of regional reanalysis assimilating only conventional observations was investigated as an alternative to dynamical downscaling to estimate the past three-dimensional high-resolution atmospheric fields with long-term homogeneity over about 60 years. The two types of widely applied dynamical downscaling approaches have problems. One, with a serial long-term time-integration, often fails to reproduce synoptic-scale systems and precipitation patterns. The other, with frequent reinitializations, underestimates precipitation due to insufficient spin-up. To address these problems maintaining long-term homogeneity, we proposed the regional reanalysis assimilating only the conventional observations. We examined it by paying special attention to summer precipitation, through one-month experiment before conducting a long-term reanalysis. The system was designed to assimilate surface pressure and radiosonde upper-air observations using the Japan Meteorological Agency’s nonhydrostatic model (NHM) and the local ensemble transform Kalman filter (LETKF). It covered Japan and its surrounding area with a 5-km grid spacing and East Asia with a 25-km grid spacing, applying one-way double nesting in the Japanese 55-year reanalysis (JRA-55). The regional reanalysis overcame the problems with both types of dynamical downscaling approaches. It reproduced actual synoptic-scale systems and precipitation patterns better. It also realistically described spatial variability and precipitation intensity. The 5-km grid spacing regional reanalysis reproduced frequency of heavy precipiJournal of the Meteorological Society of Japan Vol. 96, No. 6 566
期刊介绍:
JMSJ publishes Articles and Notes and Correspondence that report novel scientific discoveries or technical developments that advance understanding in meteorology and related sciences. The journal’s broad scope includes meteorological observations, modeling, data assimilation, analyses, global and regional climate research, satellite remote sensing, chemistry and transport, and dynamic meteorology including geophysical fluid dynamics. In particular, JMSJ welcomes papers related to Asian monsoons, climate and mesoscale models, and numerical weather forecasts. Insightful and well-structured original Review Articles that describe the advances and challenges in meteorology and related sciences are also welcome.