A Feasibility Study on the High-Resolution Regional Reanalysis over Japan Assimilating Only Conventional Observations as an Alternative to the Dynamical Downscaling

IF 2.4 4区 地球科学 Q3 METEOROLOGY & ATMOSPHERIC SCIENCES
S. Fukui, T. Iwasaki, Kazuo Saito, H. Seko, M. Kunii
{"title":"A Feasibility Study on the High-Resolution Regional Reanalysis over Japan Assimilating Only Conventional Observations as an Alternative to the Dynamical Downscaling","authors":"S. Fukui, T. Iwasaki, Kazuo Saito, H. Seko, M. Kunii","doi":"10.2151/JMSJ.2018-056","DOIUrl":null,"url":null,"abstract":"The feasibility of regional reanalysis assimilating only conventional observations was investigated as an alternative to dynamical downscaling to estimate the past three-dimensional high-resolution atmospheric fields with long-term homogeneity over about 60 years. The two types of widely applied dynamical downscaling approaches have problems. One, with a serial long-term time-integration, often fails to reproduce synoptic-scale systems and precipitation patterns. The other, with frequent reinitializations, underestimates precipitation due to insufficient spin-up. To address these problems maintaining long-term homogeneity, we proposed the regional reanalysis assimilating only the conventional observations. We examined it by paying special attention to summer precipitation, through one-month experiment before conducting a long-term reanalysis. The system was designed to assimilate surface pressure and radiosonde upper-air observations using the Japan Meteorological Agency’s nonhydrostatic model (NHM) and the local ensemble transform Kalman filter (LETKF). It covered Japan and its surrounding area with a 5-km grid spacing and East Asia with a 25-km grid spacing, applying one-way double nesting in the Japanese 55-year reanalysis (JRA-55). The regional reanalysis overcame the problems with both types of dynamical downscaling approaches. It reproduced actual synoptic-scale systems and precipitation patterns better. It also realistically described spatial variability and precipitation intensity. The 5-km grid spacing regional reanalysis reproduced frequency of heavy precipiJournal of the Meteorological Society of Japan Vol. 96, No. 6 566","PeriodicalId":17476,"journal":{"name":"Journal of the Meteorological Society of Japan","volume":"96 1","pages":"565-585"},"PeriodicalIF":2.4000,"publicationDate":"2018-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2151/JMSJ.2018-056","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Meteorological Society of Japan","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.2151/JMSJ.2018-056","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 8

Abstract

The feasibility of regional reanalysis assimilating only conventional observations was investigated as an alternative to dynamical downscaling to estimate the past three-dimensional high-resolution atmospheric fields with long-term homogeneity over about 60 years. The two types of widely applied dynamical downscaling approaches have problems. One, with a serial long-term time-integration, often fails to reproduce synoptic-scale systems and precipitation patterns. The other, with frequent reinitializations, underestimates precipitation due to insufficient spin-up. To address these problems maintaining long-term homogeneity, we proposed the regional reanalysis assimilating only the conventional observations. We examined it by paying special attention to summer precipitation, through one-month experiment before conducting a long-term reanalysis. The system was designed to assimilate surface pressure and radiosonde upper-air observations using the Japan Meteorological Agency’s nonhydrostatic model (NHM) and the local ensemble transform Kalman filter (LETKF). It covered Japan and its surrounding area with a 5-km grid spacing and East Asia with a 25-km grid spacing, applying one-way double nesting in the Japanese 55-year reanalysis (JRA-55). The regional reanalysis overcame the problems with both types of dynamical downscaling approaches. It reproduced actual synoptic-scale systems and precipitation patterns better. It also realistically described spatial variability and precipitation intensity. The 5-km grid spacing regional reanalysis reproduced frequency of heavy precipiJournal of the Meteorological Society of Japan Vol. 96, No. 6 566
日本高分辨率区域再分析的可行性研究——仅同化常规观测作为动力降尺度的替代方案
研究了仅同化常规观测资料的区域再分析作为动态降尺度的替代方法,用于估计60多年来具有长期均匀性的过去三维高分辨率大气场的可行性。两种广泛应用的动态降尺度方法都存在问题。一种是用连续的长期时间积分,往往不能再现天气尺度系统和降水模式。另一种,由于频繁的重新初始化,由于自旋上升不足而低估了降水。为了解决这些问题,我们提出了仅吸收常规观测值的区域再分析。在进行长期再分析之前,我们特别关注夏季降水,通过一个月的实验进行了检验。该系统采用日本气象厅的非流体静力模式(NHM)和局地集合变换卡尔曼滤波(LETKF)来同化地表压力和无线电探空仪的高空观测。日本55年再分析(JRA-55)采用单向双嵌套,网格间距为5 km,网格间距为25 km,覆盖日本及其周边地区。区域再分析克服了两种动态降尺度方法存在的问题。它较好地再现了实际天气尺度系统和降水模式。它也真实地描述了空间变异性和降水强度。5 km格距区域再分析再现强降水频率[j] .日本气象学会学报,96卷,第6 566期
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of the Meteorological Society of Japan
Journal of the Meteorological Society of Japan 地学-气象与大气科学
CiteScore
6.70
自引率
16.10%
发文量
56
审稿时长
3 months
期刊介绍: JMSJ publishes Articles and Notes and Correspondence that report novel scientific discoveries or technical developments that advance understanding in meteorology and related sciences. The journal’s broad scope includes meteorological observations, modeling, data assimilation, analyses, global and regional climate research, satellite remote sensing, chemistry and transport, and dynamic meteorology including geophysical fluid dynamics. In particular, JMSJ welcomes papers related to Asian monsoons, climate and mesoscale models, and numerical weather forecasts. Insightful and well-structured original Review Articles that describe the advances and challenges in meteorology and related sciences are also welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信