Wave Action Analysis of Multiple Bottom Fixed Semi-Circular Breakwaters in the Presence of a Floating Dock

IF 1.3 4区 工程技术 Q3 ENGINEERING, MECHANICAL
V. Venkateswarlu, S. Rayudu, Dhanunjaya E, Vijay K G
{"title":"Wave Action Analysis of Multiple Bottom Fixed Semi-Circular Breakwaters in the Presence of a Floating Dock","authors":"V. Venkateswarlu, S. Rayudu, Dhanunjaya E, Vijay K G","doi":"10.1115/1.4062114","DOIUrl":null,"url":null,"abstract":"\n The comprehensive usage of an array of natural or artificial semi-circular breakwaters (SCB) as supporting structures to secure the floating/fixed structures are received increasingly more consideration in recent years. The performance characteristics of bottom-fixed SCB in the presence of a floating dock are investigated under the framework of linear wave theory. The edge conditions such as continuity of velocity and pressure along the SCB and zero flow condition near rigid surfaces are adopted. The multi-domain boundary element method (MBEM) is used to examine the wave attenuation performance of the whole breakwater system in two dimensions. The correctness of the present study's numerical results is confirmed by performing the comparative study with the readily available experimental and analytical results reported by various researchers. The reflection, transmission, energy loss coefficients, and fluid force experienced by floating dock are examined as a function of incident wave properties and breakwater physical properties. The Bragg resonant reflection and performance comparison with other shapes are also studied. The study results strongly suggest that the damage of floating structures and leeward locales due to incident wave stroke is minimized with the introduction of porosity for SCB located on the seabed by dissipating the wave energy. A pair of bottom fixed SCB having 10% - 20% breakwater porosity placed far away from the dock is identified as the optimal choice to reduce the fluid force experienced by the dock and wave transmission coefficient.","PeriodicalId":50106,"journal":{"name":"Journal of Offshore Mechanics and Arctic Engineering-Transactions of the Asme","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Offshore Mechanics and Arctic Engineering-Transactions of the Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4062114","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 1

Abstract

The comprehensive usage of an array of natural or artificial semi-circular breakwaters (SCB) as supporting structures to secure the floating/fixed structures are received increasingly more consideration in recent years. The performance characteristics of bottom-fixed SCB in the presence of a floating dock are investigated under the framework of linear wave theory. The edge conditions such as continuity of velocity and pressure along the SCB and zero flow condition near rigid surfaces are adopted. The multi-domain boundary element method (MBEM) is used to examine the wave attenuation performance of the whole breakwater system in two dimensions. The correctness of the present study's numerical results is confirmed by performing the comparative study with the readily available experimental and analytical results reported by various researchers. The reflection, transmission, energy loss coefficients, and fluid force experienced by floating dock are examined as a function of incident wave properties and breakwater physical properties. The Bragg resonant reflection and performance comparison with other shapes are also studied. The study results strongly suggest that the damage of floating structures and leeward locales due to incident wave stroke is minimized with the introduction of porosity for SCB located on the seabed by dissipating the wave energy. A pair of bottom fixed SCB having 10% - 20% breakwater porosity placed far away from the dock is identified as the optimal choice to reduce the fluid force experienced by the dock and wave transmission coefficient.
浮船坞作用下多底固定半圆型防波堤波浪作用分析
近年来,越来越多的人考虑将一系列天然或人造半圆形防波堤(SCB)作为支撑结构来固定浮动/固定结构。在线性波动理论的框架下,研究了浮船坞存在下底部固定SCB的性能特性。采用了沿SCB的速度和压力连续性以及刚性表面附近的零流量条件等边缘条件。采用多域边界元法(MBEM)对整个防波堤系统的波浪衰减性能进行了二维检测。通过与各研究人员报告的现成实验和分析结果进行比较研究,证实了本研究数值结果的正确性。研究了浮船坞所经历的反射、透射、能量损失系数和流体力作为入射波特性和防波堤物理特性的函数。还研究了布拉格谐振反射及其与其他形状的性能比较。研究结果强烈表明,通过消散波浪能量,为位于海床上的SCB引入孔隙率,可以最大限度地减少因入射波浪冲击而对漂浮结构和背风位置造成的损害。一对防波堤孔隙率为10%-20%的底部固定式SCB放置在远离码头的地方,被认为是减少码头所受流体力和波浪传输系数的最佳选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.20
自引率
6.20%
发文量
63
审稿时长
6-12 weeks
期刊介绍: The Journal of Offshore Mechanics and Arctic Engineering is an international resource for original peer-reviewed research that advances the state of knowledge on all aspects of analysis, design, and technology development in ocean, offshore, arctic, and related fields. Its main goals are to provide a forum for timely and in-depth exchanges of scientific and technical information among researchers and engineers. It emphasizes fundamental research and development studies as well as review articles that offer either retrospective perspectives on well-established topics or exposures to innovative or novel developments. Case histories are not encouraged. The journal also documents significant developments in related fields and major accomplishments of renowned scientists by programming themed issues to record such events. Scope: Offshore Mechanics, Drilling Technology, Fixed and Floating Production Systems; Ocean Engineering, Hydrodynamics, and Ship Motions; Ocean Climate Statistics, Storms, Extremes, and Hurricanes; Structural Mechanics; Safety, Reliability, Risk Assessment, and Uncertainty Quantification; Riser Mechanics, Cable and Mooring Dynamics, Pipeline and Subsea Technology; Materials Engineering, Fatigue, Fracture, Welding Technology, Non-destructive Testing, Inspection Technologies, Corrosion Protection and Control; Fluid-structure Interaction, Computational Fluid Dynamics, Flow and Vortex-Induced Vibrations; Marine and Offshore Geotechnics, Soil Mechanics, Soil-pipeline Interaction; Ocean Renewable Energy; Ocean Space Utilization and Aquaculture Engineering; Petroleum Technology; Polar and Arctic Science and Technology, Ice Mechanics, Arctic Drilling and Exploration, Arctic Structures, Ice-structure and Ship Interaction, Permafrost Engineering, Arctic and Thermal Design.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信