Tri-Band, Stable and Compact Patch Frequency Selective Surface Optimized via Hybrid Bioinspired Computing for Applications at 2.4, 3.5 and 5.8 GHz

Q3 Engineering
Flávio H. C. S. Ferreira, J. Araújo, A. Gomes Neto, I. B. G. Coutinho, F. Barros, G. Cavalcante, M. C. A. Alcântara Neto
{"title":"Tri-Band, Stable and Compact Patch Frequency Selective Surface Optimized via Hybrid Bioinspired Computing for Applications at 2.4, 3.5 and 5.8 GHz","authors":"Flávio H. C. S. Ferreira, J. Araújo, A. Gomes Neto, I. B. G. Coutinho, F. Barros, G. Cavalcante, M. C. A. Alcântara Neto","doi":"10.1590/2179-10742021v20i31120","DOIUrl":null,"url":null,"abstract":"Abstract This work addresses the synthesis of a multi-band frequency selective surface (FSS) through bioinspired computing and a general regression neural network (GRNN). This hybrid computational method, which utilizes the multi-objective cuckoo search algorithm combined to a GRNN, determine the best physical dimensions of the FSS in order to achieve a multi-band filtering at the 2.4, 3.5 and 5.8 GHz spectrums. Therefore, the results are to be applied to aid the propagation of Wi-Fi, WLAN, WiMAX and future sub-6 GHz 5G systems. The resonant frequencies were measured and a -10 dB cutoff value has been considered for the transmission coefficient. The triple rectangular loop conductor geometry of the device is printed upon a glass epoxy (FR-4) substrate. Measurements were made for different wave incidence angles, from 0° up to 45°, to demonstrate how signal incidence would affect the device’s functioning. The agreement between simulated and measured data display satisfactory results.","PeriodicalId":53567,"journal":{"name":"Journal of Microwaves, Optoelectronics and Electromagnetic Applications","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Microwaves, Optoelectronics and Electromagnetic Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1590/2179-10742021v20i31120","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract This work addresses the synthesis of a multi-band frequency selective surface (FSS) through bioinspired computing and a general regression neural network (GRNN). This hybrid computational method, which utilizes the multi-objective cuckoo search algorithm combined to a GRNN, determine the best physical dimensions of the FSS in order to achieve a multi-band filtering at the 2.4, 3.5 and 5.8 GHz spectrums. Therefore, the results are to be applied to aid the propagation of Wi-Fi, WLAN, WiMAX and future sub-6 GHz 5G systems. The resonant frequencies were measured and a -10 dB cutoff value has been considered for the transmission coefficient. The triple rectangular loop conductor geometry of the device is printed upon a glass epoxy (FR-4) substrate. Measurements were made for different wave incidence angles, from 0° up to 45°, to demonstrate how signal incidence would affect the device’s functioning. The agreement between simulated and measured data display satisfactory results.
三波段,稳定和紧凑的贴片频率选择表面通过混合生物启发计算优化应用于2.4,3.5和5.8 GHz
摘要:本研究通过生物启发计算和广义回归神经网络(GRNN)合成了多波段频率选择表面(FSS)。该混合计算方法将多目标布谷鸟搜索算法与GRNN相结合,确定了FSS的最佳物理尺寸,以实现2.4、3.5和5.8 GHz频谱的多频段滤波。因此,研究结果将被应用于Wi-Fi、WLAN、WiMAX和未来sub-6 GHz 5G系统的传播。测量了谐振频率,并考虑了传输系数的截止值为-10 dB。该装置的三矩形环路导体几何形状印刷在玻璃环氧树脂(FR-4)基板上。测量了不同的波入射角,从0°到45°,以演示信号入射角如何影响设备的功能。仿真结果与实测数据吻合较好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Microwaves, Optoelectronics and Electromagnetic Applications
Journal of Microwaves, Optoelectronics and Electromagnetic Applications Engineering-Electrical and Electronic Engineering
CiteScore
1.70
自引率
0.00%
发文量
32
审稿时长
24 weeks
期刊介绍: The Journal of Microwaves, Optoelectronics and Electromagnetic Applications (JMOe), published by the Brazilian Microwave and Optoelectronics Society (SBMO) and Brazilian Society of Electromagnetism (SBMag), is a professional, refereed publication devoted to disseminating technical information in the areas of Microwaves, Optoelectronics, Photonics, and Electromagnetic Applications. Authors are invited to submit original work in one or more of the following topics. Electromagnetic Field Analysis[...] Computer Aided Design [...] Microwave Technologies [...] Photonic Technologies [...] Packaging, Integration and Test [...] Millimeter Wave Technologies [...] Electromagnetic Applications[...] Other Topics [...] Antennas [...] Articles in all aspects of microwave, optoelectronics, photonic devices and applications will be covered in the journal. All submitted papers will be peer-reviewed under supervision of the editors and the editorial board.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信