Online Large-Scale Taxi Assignment: Optimization and Learning

Omar Rifki, Thierry Garaix
{"title":"Online Large-Scale Taxi Assignment: Optimization and Learning","authors":"Omar Rifki, Thierry Garaix","doi":"10.32866/001c.74765","DOIUrl":null,"url":null,"abstract":"We propose a solution method for online vehicle routing, which integrates a machine learning routine to improve tours’ quality. Our optimization model is based on the Bertsimas et al. (2019) re-optimization approach. Two separate routines are developed. The first one uses a neural network to produce realistic pick-up times for the customers to serve. The second one relies on Q-learning in addition to random walks for the construction of the backbone graph corresponding to the instance problem of each time step. The second routine gives improved results compared to the original approach.","PeriodicalId":73025,"journal":{"name":"Findings (Sydney (N.S.W.)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Findings (Sydney (N.S.W.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32866/001c.74765","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a solution method for online vehicle routing, which integrates a machine learning routine to improve tours’ quality. Our optimization model is based on the Bertsimas et al. (2019) re-optimization approach. Two separate routines are developed. The first one uses a neural network to produce realistic pick-up times for the customers to serve. The second one relies on Q-learning in addition to random walks for the construction of the backbone graph corresponding to the instance problem of each time step. The second routine gives improved results compared to the original approach.
网上大型出租车作业的优化与学习
我们提出了一种在线车辆路线的解决方法,该方法集成了机器学习例程来提高旅行质量。我们的优化模型基于Bertsimas等人(2019)的重新优化方法。开发了两个独立的例程。第一种是使用神经网络为客户提供真实的取货时间。第二种方法除了随机行走之外,还依赖于Q学习来构建与每个时间步长的实例问题相对应的主干图。与原始方法相比,第二个例程提供了改进的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
审稿时长
4 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信