{"title":"Synthesis and study of magnesium complexes derived from polyacrylate and polyvinyl alcohol and their applications as superabsorbent polymers","authors":"S. A. Kadhim, Awham M. Hameed, R. Rasheed","doi":"10.1515/jmbm-2022-0053","DOIUrl":null,"url":null,"abstract":"Abstract Novel superabsorbent polymers (SAPs) were created by solution polymerization at ambient temperature using potassium polyacrylate (KPA), polyvinyl alcohol (PVA), and magnesium chloride as a cross-linking agent with different weights of 0.4, 0.5, 0.6, 0.7, 0.8, and 1 g for KPA and 0.33, 0.44, 0.55, 0.733, and 1.1 g for PVA. Fourier transforms infrared (FTIR) and UV-Vis spectroscopy were used to determine the chemical composition of the SAP complexes. The outcomes revealed that the KPA and PVA successfully interacted with the magnesium chloride. The morphology of the surfaces shows a uniform porous interconnected microstructure as revealed by field emission scanning electron microscopy. The effective preparation was confirmed by thermal characterization (thermogravimetric analysis and differential scanning calorimetry) of the SAPs. The influence of the cross-linker agent on the SAPs’ water absorbency was examined. The magnesium polyacrylate (Mg-PA) (0.6 g of MgCl2) SAP has a maximum swelling capacity of 650%, while that of magnesium polyvinyl alcohol (Mg-PVA) (0.55 g of MgCl2) was 244%. The findings confirmed that the SAPs have excellent swelling and water-retaining capabilities. The strategy used in this investigation may function as a model for developing and widespread usage of SAPs in agriculture and horticulture.","PeriodicalId":17354,"journal":{"name":"Journal of the Mechanical Behavior of Materials","volume":"31 1","pages":"462 - 472"},"PeriodicalIF":1.7000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Mechanical Behavior of Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jmbm-2022-0053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract Novel superabsorbent polymers (SAPs) were created by solution polymerization at ambient temperature using potassium polyacrylate (KPA), polyvinyl alcohol (PVA), and magnesium chloride as a cross-linking agent with different weights of 0.4, 0.5, 0.6, 0.7, 0.8, and 1 g for KPA and 0.33, 0.44, 0.55, 0.733, and 1.1 g for PVA. Fourier transforms infrared (FTIR) and UV-Vis spectroscopy were used to determine the chemical composition of the SAP complexes. The outcomes revealed that the KPA and PVA successfully interacted with the magnesium chloride. The morphology of the surfaces shows a uniform porous interconnected microstructure as revealed by field emission scanning electron microscopy. The effective preparation was confirmed by thermal characterization (thermogravimetric analysis and differential scanning calorimetry) of the SAPs. The influence of the cross-linker agent on the SAPs’ water absorbency was examined. The magnesium polyacrylate (Mg-PA) (0.6 g of MgCl2) SAP has a maximum swelling capacity of 650%, while that of magnesium polyvinyl alcohol (Mg-PVA) (0.55 g of MgCl2) was 244%. The findings confirmed that the SAPs have excellent swelling and water-retaining capabilities. The strategy used in this investigation may function as a model for developing and widespread usage of SAPs in agriculture and horticulture.
期刊介绍:
The journal focuses on the micromechanics and nanomechanics of materials, the relationship between structure and mechanical properties, material instabilities and fracture, as well as size effects and length/time scale transitions. Articles on cutting edge theory, simulations and experiments – used as tools for revealing novel material properties and designing new devices for structural, thermo-chemo-mechanical, and opto-electro-mechanical applications – are encouraged. Synthesis/processing and related traditional mechanics/materials science themes are not within the scope of JMBM. The Editorial Board also organizes topical issues on emerging areas by invitation. Topics Metals and Alloys Ceramics and Glasses Soils and Geomaterials Concrete and Cementitious Materials Polymers and Composites Wood and Paper Elastomers and Biomaterials Liquid Crystals and Suspensions Electromagnetic and Optoelectronic Materials High-energy Density Storage Materials Monument Restoration and Cultural Heritage Preservation Materials Nanomaterials Complex and Emerging Materials.