An Adaptive Physics-Informed Neural Network with Two-Stage Learning Strategy to Solve Partial Differential Equations

IF 1.9 4区 数学 Q1 MATHEMATICS
{"title":"An Adaptive Physics-Informed Neural Network with Two-Stage Learning Strategy to Solve Partial Differential Equations","authors":"","doi":"10.4208/nmtma.oa-2022-0063","DOIUrl":null,"url":null,"abstract":". Physics-Informed Neural Network (PINN) represents a new approach to solve Partial Differential Equations (PDEs). PINNs aim to solve PDEs by integrating governing equations and the initial/boundary conditions (I/BCs) into a loss function. However, the imbalance of the loss function caused by parameter settings usually makes it difficult for PINNs to converge, e.g. because they fall into local optima. In other words, the presence of balanced PDE loss, initial loss and boundary loss may be critical for the convergence. In addition, existing PINNs are not able to reveal the hidden errors caused by non-convergent boundaries and conduction errors caused by the PDE near the boundaries. Overall, these problems have made PINN-based methods of limited use on practical situations. In this paper, we propose a novel physics-informed neural network, i.e. an adaptive physics-informed neural network with a two-stage training process. Our algorithm adds spatio-temporal coefficient and PDE balance parameter to the loss function, and solve PDEs using a two-stage training process: pre-training and formal training. The pre-training step ensures the convergence of boundary loss, whereas the formal training process completes the solution of PDE","PeriodicalId":51146,"journal":{"name":"Numerical Mathematics-Theory Methods and Applications","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Mathematics-Theory Methods and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4208/nmtma.oa-2022-0063","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

. Physics-Informed Neural Network (PINN) represents a new approach to solve Partial Differential Equations (PDEs). PINNs aim to solve PDEs by integrating governing equations and the initial/boundary conditions (I/BCs) into a loss function. However, the imbalance of the loss function caused by parameter settings usually makes it difficult for PINNs to converge, e.g. because they fall into local optima. In other words, the presence of balanced PDE loss, initial loss and boundary loss may be critical for the convergence. In addition, existing PINNs are not able to reveal the hidden errors caused by non-convergent boundaries and conduction errors caused by the PDE near the boundaries. Overall, these problems have made PINN-based methods of limited use on practical situations. In this paper, we propose a novel physics-informed neural network, i.e. an adaptive physics-informed neural network with a two-stage training process. Our algorithm adds spatio-temporal coefficient and PDE balance parameter to the loss function, and solve PDEs using a two-stage training process: pre-training and formal training. The pre-training step ensures the convergence of boundary loss, whereas the formal training process completes the solution of PDE
求解偏微分方程的两阶段学习策略自适应物理知情神经网络
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.80
自引率
7.70%
发文量
33
审稿时长
>12 weeks
期刊介绍: Numerical Mathematics: Theory, Methods and Applications (NM-TMA) publishes high-quality original research papers on the construction, analysis and application of numerical methods for solving scientific and engineering problems. Important research and expository papers devoted to the numerical solution of mathematical equations arising in all areas of science and technology are expected. The journal originates from the journal Numerical Mathematics: A Journal of Chinese Universities (English Edition). NM-TMA is a refereed international journal sponsored by Nanjing University and the Ministry of Education of China. As an international journal, NM-TMA is published in a timely fashion in printed and electronic forms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信