Conservative finite difference schemes for dynamical systems

Yu Ying, Zhen Lu
{"title":"Conservative finite difference schemes for dynamical systems","authors":"Yu Ying, Zhen Lu","doi":"10.22363/2658-4670-2022-30-4-364-373","DOIUrl":null,"url":null,"abstract":"The article presents the implementation of one of the approaches to the integration of dynamical systems, which preserves algebraic integrals in the original fdm for Sage system. This approach, which goes back to the paper by del Buono and Mastroserio, makes it possible, based on any two explicit difference schemes, including any two explicit Runge-Kutta schemes, to construct a new numerical algorithm for integrating a dynamical system that preserves the given integral. This approach has been implemented and tested in the original fdm for Sage system. Details and implementation difficulties are discussed. For testing, two Runge-Kutta schemes were taken having the same order, but different Butcher tables, which does not complicate the method due to paralleling. Two examples are considered - a linear oscillator and a Jacobi oscillator with two quadratic integrals. The second example shows that the preservation of one integral of motion does not lead to the conservation of the other. Moreover, this method allows us to propose a practical application of the well-known ambiguity in the definition of Butcher tables.","PeriodicalId":34192,"journal":{"name":"Discrete and Continuous Models and Applied Computational Science","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete and Continuous Models and Applied Computational Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22363/2658-4670-2022-30-4-364-373","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The article presents the implementation of one of the approaches to the integration of dynamical systems, which preserves algebraic integrals in the original fdm for Sage system. This approach, which goes back to the paper by del Buono and Mastroserio, makes it possible, based on any two explicit difference schemes, including any two explicit Runge-Kutta schemes, to construct a new numerical algorithm for integrating a dynamical system that preserves the given integral. This approach has been implemented and tested in the original fdm for Sage system. Details and implementation difficulties are discussed. For testing, two Runge-Kutta schemes were taken having the same order, but different Butcher tables, which does not complicate the method due to paralleling. Two examples are considered - a linear oscillator and a Jacobi oscillator with two quadratic integrals. The second example shows that the preservation of one integral of motion does not lead to the conservation of the other. Moreover, this method allows us to propose a practical application of the well-known ambiguity in the definition of Butcher tables.
动力系统的守恒有限差分格式
本文介绍了一种动力系统积分方法的实现,该方法将Sage系统的代数积分保留在原始fdm中。这种方法可以追溯到del Buono和Mastroserio的论文中,它使得基于任何两个显式差分格式,包括任何两个隐式Runge-Kutta格式,构造一种新的数值算法来积分一个保持给定积分的动力系统成为可能。这种方法已经在Sage系统的原始fdm中实现和测试。讨论了细节和实施困难。为了进行测试,采用了两个具有相同阶数但不同Butcher表的Runge-Kutta方案,这不会由于并行而使方法复杂化。考虑了两个例子——一个线性振子和一个具有两个二次积分的雅可比振子。第二个例子表明,一个运动积分的守恒不会导致另一个积分的守恒。此外,该方法使我们能够提出一个众所周知的模糊性在Butcher表定义中的实际应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
20
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信