The pseudoinverse of the Laplacian matrix: Asymptotic behavior of its trace

Pub Date : 2023-04-19 DOI:10.1007/s10476-023-0216-4
F. Ecevit, C. Y. Yildirim
{"title":"The pseudoinverse of the Laplacian matrix: Asymptotic behavior of its trace","authors":"F. Ecevit,&nbsp;C. Y. Yildirim","doi":"10.1007/s10476-023-0216-4","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper we are concerned with the asymptotic behavior of </p><div><div><span>$${\\rm{tr}}({\\cal L}_{{\\rm{sq}}}^ + ) = {1 \\over 4}\\sum\\limits_{\\matrix{{j,k = 0} \\cr {(j,k) \\ne (0,0)} \\cr } }^{n - 1} {{1 \\over {1 - {1 \\over 2}(\\cos {{2\\pi j} \\over n} + \\cos {{2\\pi k} \\over n})}},} $$</span></div></div><p> the trace of the pseudoinverse of the Laplacian matrix related with the square lattice, as <i>n</i> → ∞. The method we developed for such sums in former papers depends on the use of Taylor approximations for the summands. It was shown that the error term depends on whether the Taylor polynomial used is of degree two or higher. Here we carry this out for the square lattice with a fourth degree Taylor polynomial and thereby obtain a result with an improved error term which is perhaps the most precise one can hope for.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10476-023-0216-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we are concerned with the asymptotic behavior of

$${\rm{tr}}({\cal L}_{{\rm{sq}}}^ + ) = {1 \over 4}\sum\limits_{\matrix{{j,k = 0} \cr {(j,k) \ne (0,0)} \cr } }^{n - 1} {{1 \over {1 - {1 \over 2}(\cos {{2\pi j} \over n} + \cos {{2\pi k} \over n})}},} $$

the trace of the pseudoinverse of the Laplacian matrix related with the square lattice, as n → ∞. The method we developed for such sums in former papers depends on the use of Taylor approximations for the summands. It was shown that the error term depends on whether the Taylor polynomial used is of degree two or higher. Here we carry this out for the square lattice with a fourth degree Taylor polynomial and thereby obtain a result with an improved error term which is perhaps the most precise one can hope for.

分享
查看原文
拉普拉斯矩阵的伪逆:其迹的渐近性
在本文中,我们关注$${\rm{tr}}({\cal L}_{\rm{sq}^+)={1\over4}\sum\limits_{\matrix{{j,k=0}\cr{(j,k)\ne(0,0)}\cr}^{n-1}与正方形晶格,如n→ ∞. 我们在以前的论文中为这种和开发的方法取决于对和的泰勒近似的使用。结果表明,误差项取决于所使用的泰勒多项式是二阶还是更高阶。在这里,我们对具有四阶泰勒多项式的正方形晶格进行了这一操作,从而获得了具有改进的误差项的结果,这可能是最精确的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信