A note on the one-dimensional critical points of the Ambrosio–Tortorelli functional

IF 1.1 4区 数学 Q2 MATHEMATICS, APPLIED
Jean-François Babadjian, V. Millot, Rémy Rodiac
{"title":"A note on the one-dimensional critical points of the Ambrosio–Tortorelli functional","authors":"Jean-François Babadjian, V. Millot, Rémy Rodiac","doi":"10.3233/asy-231857","DOIUrl":null,"url":null,"abstract":"This note addresses the question of convergence of critical points of the Ambrosio–Tortorelli functional in the one-dimensional case under pure Dirichlet boundary conditions. An asymptotic analysis argument shows the convergence to two possible limits points: either a globally affine function or a step function with a single jump at the middle point of the space interval, which are both critical points of the one-dimensional Mumford–Shah functional under a Dirichlet boundary condition. As a byproduct, non minimizing critical points of the Ambrosio–Tortorelli functional satisfying the energy convergence assumption as in (Babadjian, Millot and Rodiac (2022)) are proved to exist.","PeriodicalId":55438,"journal":{"name":"Asymptotic Analysis","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2023-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asymptotic Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3233/asy-231857","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 2

Abstract

This note addresses the question of convergence of critical points of the Ambrosio–Tortorelli functional in the one-dimensional case under pure Dirichlet boundary conditions. An asymptotic analysis argument shows the convergence to two possible limits points: either a globally affine function or a step function with a single jump at the middle point of the space interval, which are both critical points of the one-dimensional Mumford–Shah functional under a Dirichlet boundary condition. As a byproduct, non minimizing critical points of the Ambrosio–Tortorelli functional satisfying the energy convergence assumption as in (Babadjian, Millot and Rodiac (2022)) are proved to exist.
关于Ambrosio–Tortorelli泛函一维临界点的一个注记
本文讨论了在纯Dirichlet边界条件下一维情况下Ambrosio–Tortorelli泛函临界点的收敛问题。渐近分析论证表明收敛到两个可能的极限点:全局仿射函数或在空间区间中点具有单跳的阶跃函数,这两个极限点都是Dirichlet边界条件下一维Mumford–Shah函数的临界点。作为副产品,证明了满足能量收敛假设的Ambrosio–Tortorelli泛函的非最小化临界点是存在的,如(Babadjian,Millot和Rodiac(2022))。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Asymptotic Analysis
Asymptotic Analysis 数学-应用数学
CiteScore
1.90
自引率
7.10%
发文量
91
审稿时长
6 months
期刊介绍: The journal Asymptotic Analysis fulfills a twofold function. It aims at publishing original mathematical results in the asymptotic theory of problems affected by the presence of small or large parameters on the one hand, and at giving specific indications of their possible applications to different fields of natural sciences on the other hand. Asymptotic Analysis thus provides mathematicians with a concentrated source of newly acquired information which they may need in the analysis of asymptotic problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信