Carathéodory approximate solutions for a class of stochastic differential equations involving the local time at point zero with one-sided Lipschitz continuous drift coefficients

IF 0.8 Q3 STATISTICS & PROBABILITY
Kamal Hiderah
{"title":"Carathéodory approximate solutions for a class of stochastic differential equations involving the local time at point zero with one-sided Lipschitz continuous drift coefficients","authors":"Kamal Hiderah","doi":"10.1515/mcma-2022-2107","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we study the Carathéodory approximate solution for a class of stochastic differential equations involving the local time at point zero. Based on the Carathéodory approximation procedure, we prove that stochastic differential equations involving the local time at point zero have a unique solution, and we show that the Carathéodory approximate solution converges to the solution of stochastic differential equations involving the local time at point zero with one-sided Lipschitz drift coefficient.","PeriodicalId":46576,"journal":{"name":"Monte Carlo Methods and Applications","volume":"28 1","pages":"189 - 198"},"PeriodicalIF":0.8000,"publicationDate":"2022-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Monte Carlo Methods and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/mcma-2022-2107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract In this paper, we study the Carathéodory approximate solution for a class of stochastic differential equations involving the local time at point zero. Based on the Carathéodory approximation procedure, we prove that stochastic differential equations involving the local time at point zero have a unique solution, and we show that the Carathéodory approximate solution converges to the solution of stochastic differential equations involving the local time at point zero with one-sided Lipschitz drift coefficient.
一类具有单侧Lipschitz连续漂移系数的局部时间为0点的随机微分方程的carathacimodory近似解
摘要本文研究了一类涉及零点局部时间的随机微分方程的Carathéodory近似解。基于Carathéodory近似过程,我们证明了包含零点局部时间的随机微分方程具有唯一解,并证明了Carathé奥多ry近似解收敛于包含零点局部时随机微分方程的具有单侧Lipschitz漂移系数的解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Monte Carlo Methods and Applications
Monte Carlo Methods and Applications STATISTICS & PROBABILITY-
CiteScore
1.20
自引率
22.20%
发文量
31
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信