{"title":"An efficient linearly implicit and energy‐conservative scheme for two dimensional Klein–Gordon–Schrödinger equations","authors":"Hongwei Li, Yuna Yang, Xiangkun Li","doi":"10.1002/num.23064","DOIUrl":null,"url":null,"abstract":"The Klein–Gordon–Schrödinger equations describe a classical model of interaction of nucleon field with meson field in physics, how to design the energy conservative and stable schemes is an important issue. This paper aims to develop a linearized energy‐preserve, unconditionally stable and efficient scheme for Klein–Gordon–Schrödinger equations. Some auxiliary variables are utilized to circumvent the imaginary functions of Klein–Gordon–Schrödinger equations, and transform the original system into its real formulation. Based on the invariant energy quadratization approach, an equivalent system is deduced by introducing a Lagrange multiplier. Then the efficient and unconditionally stable scheme is designed to discretize the deduced equivalent system. A numerical analysis of the proposed scheme is presented to illustrate its uniquely solvability and convergence. Numerical examples are provided to validate accuracy, energy and mass conservation laws, and stability of our proposed method.","PeriodicalId":19443,"journal":{"name":"Numerical Methods for Partial Differential Equations","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Methods for Partial Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/num.23064","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
The Klein–Gordon–Schrödinger equations describe a classical model of interaction of nucleon field with meson field in physics, how to design the energy conservative and stable schemes is an important issue. This paper aims to develop a linearized energy‐preserve, unconditionally stable and efficient scheme for Klein–Gordon–Schrödinger equations. Some auxiliary variables are utilized to circumvent the imaginary functions of Klein–Gordon–Schrödinger equations, and transform the original system into its real formulation. Based on the invariant energy quadratization approach, an equivalent system is deduced by introducing a Lagrange multiplier. Then the efficient and unconditionally stable scheme is designed to discretize the deduced equivalent system. A numerical analysis of the proposed scheme is presented to illustrate its uniquely solvability and convergence. Numerical examples are provided to validate accuracy, energy and mass conservation laws, and stability of our proposed method.
期刊介绍:
An international journal that aims to cover research into the development and analysis of new methods for the numerical solution of partial differential equations, it is intended that it be readily readable by and directed to a broad spectrum of researchers into numerical methods for partial differential equations throughout science and engineering. The numerical methods and techniques themselves are emphasized rather than the specific applications. The Journal seeks to be interdisciplinary, while retaining the common thread of applied numerical analysis.