Effect of stacking sequence and thickness variation on the thermo-mechanical properties of flax-kenaf laminated biocomposites and prediction of the optimal configuration using a decision-making framework
{"title":"Effect of stacking sequence and thickness variation on the thermo-mechanical properties of flax-kenaf laminated biocomposites and prediction of the optimal configuration using a decision-making framework","authors":"S Kumar, S. Bhowmik, D. Zindani","doi":"10.1515/ipp-2023-4341","DOIUrl":null,"url":null,"abstract":"Abstract The use of naturally derived eco-friendly biocomposites became more popular due to growing environmental concerns and hunt for sustainable materials. Biocomposites can reduce the residual waste and carbon emission to the environment during their lifecycle. The present study aims to develop biocomposites by reinforcing flax fiber (F) and kenaf fiber (K) laminates with bio-epoxy matrix at four different arrangements (FFF, FKF, KFK, and KKK). The biocomposite samples were fabricated with three laminated thicknesses (3 mm, 4 mm and 5 mm) and the thermo-mechanical performance was investigated. The results showed that FFF biocomposites recorded higher tensile, flexural, and interfacial properties with lower density and absorption of water compared to KKK biocomposites due to higher cylindrical lumen diameter of flax laminates. The hybridization of flax with kenaf fiber at different stacking sequences provided greater strength, modulus, toughness, stiffness, thermal stability and degradation behaviour due to greater interfacial interaction between laminated fiber and bio-epoxy. The FKF biocomposites showed maximum impact strength (52.96 kJ/m2), tensile strength (110.21 MPa), and compressive strength (139.64 MPa) at 5 mm laminated thickness while, flexural (158.67 MPa) and shear strength (39.45 MPa) were maximum at 4 mm thickness with the highest degradation temperature (336 °C). The optimal biocomposite configuration has been identified through employability of a novel decision-making framework encompassing interval-valued intuitionistic fuzzy sets, TOmada de DecisaoInterativaMulticriterio (TODIM) and Schweizer–Sklar operations. The inclusive evaluation with regard to the applied framework has revealed that FKF and KFK biocomposites with 4 mm thickness (Lam5 and Lam8) configuration to have the optimal configuration. On the other hand, Lam 10, i.e., KKK_3 mm turned out to be inferior to all the considered biocomposite configurations.","PeriodicalId":14410,"journal":{"name":"International Polymer Processing","volume":"38 1","pages":"404 - 423"},"PeriodicalIF":1.1000,"publicationDate":"2023-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Polymer Processing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/ipp-2023-4341","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract The use of naturally derived eco-friendly biocomposites became more popular due to growing environmental concerns and hunt for sustainable materials. Biocomposites can reduce the residual waste and carbon emission to the environment during their lifecycle. The present study aims to develop biocomposites by reinforcing flax fiber (F) and kenaf fiber (K) laminates with bio-epoxy matrix at four different arrangements (FFF, FKF, KFK, and KKK). The biocomposite samples were fabricated with three laminated thicknesses (3 mm, 4 mm and 5 mm) and the thermo-mechanical performance was investigated. The results showed that FFF biocomposites recorded higher tensile, flexural, and interfacial properties with lower density and absorption of water compared to KKK biocomposites due to higher cylindrical lumen diameter of flax laminates. The hybridization of flax with kenaf fiber at different stacking sequences provided greater strength, modulus, toughness, stiffness, thermal stability and degradation behaviour due to greater interfacial interaction between laminated fiber and bio-epoxy. The FKF biocomposites showed maximum impact strength (52.96 kJ/m2), tensile strength (110.21 MPa), and compressive strength (139.64 MPa) at 5 mm laminated thickness while, flexural (158.67 MPa) and shear strength (39.45 MPa) were maximum at 4 mm thickness with the highest degradation temperature (336 °C). The optimal biocomposite configuration has been identified through employability of a novel decision-making framework encompassing interval-valued intuitionistic fuzzy sets, TOmada de DecisaoInterativaMulticriterio (TODIM) and Schweizer–Sklar operations. The inclusive evaluation with regard to the applied framework has revealed that FKF and KFK biocomposites with 4 mm thickness (Lam5 and Lam8) configuration to have the optimal configuration. On the other hand, Lam 10, i.e., KKK_3 mm turned out to be inferior to all the considered biocomposite configurations.
期刊介绍:
International Polymer Processing offers original research contributions, invited review papers and recent technological developments in processing thermoplastics, thermosets, elastomers and fibers as well as polymer reaction engineering. For more than 25 years International Polymer Processing, the journal of the Polymer Processing Society, provides strictly peer-reviewed, high-quality articles and rapid communications from the leading experts around the world.