Enhancement of Coronary Heart Disease Prediction using Stacked Long Short Term Memory

Cinthiya Cinthiya, R. Oetama
{"title":"Enhancement of Coronary Heart Disease Prediction using Stacked Long Short Term Memory","authors":"Cinthiya Cinthiya, R. Oetama","doi":"10.26905/jtmi.v9i1.9707","DOIUrl":null,"url":null,"abstract":"The high incidence of death caused by coronary heart disease has become a global concern in the world of health, where patients with coronary heart disease are no longer only adults and the elderly, yet there are now so many cases of coronary heart disease experienced by underage patients. As a result, it is critical to be able to prevent and reduce the number of instances. One of them is the ability to predict a person's risk of coronary heart disease so that patients can be treated and provided early therapy. The risk of coronary heart disease will be predicted in this study utilizing Stacked long short-term memory algorithms. By appling this algorithm, the accuracy of 81.3% from previous study can be increased to 91.8% by this study. ","PeriodicalId":31840,"journal":{"name":"Jurnal Teknologi dan Manajemen Informatika","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Teknologi dan Manajemen Informatika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26905/jtmi.v9i1.9707","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The high incidence of death caused by coronary heart disease has become a global concern in the world of health, where patients with coronary heart disease are no longer only adults and the elderly, yet there are now so many cases of coronary heart disease experienced by underage patients. As a result, it is critical to be able to prevent and reduce the number of instances. One of them is the ability to predict a person's risk of coronary heart disease so that patients can be treated and provided early therapy. The risk of coronary heart disease will be predicted in this study utilizing Stacked long short-term memory algorithms. By appling this algorithm, the accuracy of 81.3% from previous study can be increased to 91.8% by this study. 
利用堆叠长短期记忆增强冠心病预测
冠心病导致的高死亡率已成为全球卫生界关注的问题,冠心病患者不再只是成年人和老年人,但现在有很多未成年患者经历的冠心病病例。因此,能够防止和减少实例的数量是至关重要的。其中之一是能够预测一个人患冠心病的风险,从而为患者提供早期治疗。本研究将利用堆叠长短期记忆算法预测冠心病的风险。通过应用该算法,本研究将以前研究的81.3%的准确率提高到91.8%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
8
审稿时长
24 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信