Cong Zhang, Yaoxin Wu, Yining Ma, Wen Song, Zhang Le, Zhiguang Cao, Jie Zhang
{"title":"A review on learning to solve combinatorial optimisation problems in manufacturing","authors":"Cong Zhang, Yaoxin Wu, Yining Ma, Wen Song, Zhang Le, Zhiguang Cao, Jie Zhang","doi":"10.1049/cim2.12072","DOIUrl":null,"url":null,"abstract":"<p>An efficient manufacturing system is key to maintaining a healthy economy today. With the rapid development of science and technology and the progress of human society, the modern manufacturing system is becoming increasingly complex, posing new challenges to both academia and industry. Ever since the beginning of industrialisation, leaps in manufacturing technology have always accompanied technological breakthroughs from other fields, for example, mechanics, physics, and computational science. Recently, machine learning (ML) technology, one of the crucial subjects of artificial intelligence, has made remarkable progress in many areas. This study thoroughly reviews how ML, specifically deep (reinforcement) learning, motivates new ideas for addressing challenging problems in manufacturing systems. We collect the literature targeting three aspects: scheduling, packing, and routing, which correspond to three pivotal cooperative production links of today's manufacturing system, that is, production, packing, and logistics respectively. For each aspect, we first present and discuss the state-of-the-art research. Then we summarise and analyse the development trends and point out future research opportunities and challenges.</p>","PeriodicalId":33286,"journal":{"name":"IET Collaborative Intelligent Manufacturing","volume":"5 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2023-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cim2.12072","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Collaborative Intelligent Manufacturing","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cim2.12072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 9
Abstract
An efficient manufacturing system is key to maintaining a healthy economy today. With the rapid development of science and technology and the progress of human society, the modern manufacturing system is becoming increasingly complex, posing new challenges to both academia and industry. Ever since the beginning of industrialisation, leaps in manufacturing technology have always accompanied technological breakthroughs from other fields, for example, mechanics, physics, and computational science. Recently, machine learning (ML) technology, one of the crucial subjects of artificial intelligence, has made remarkable progress in many areas. This study thoroughly reviews how ML, specifically deep (reinforcement) learning, motivates new ideas for addressing challenging problems in manufacturing systems. We collect the literature targeting three aspects: scheduling, packing, and routing, which correspond to three pivotal cooperative production links of today's manufacturing system, that is, production, packing, and logistics respectively. For each aspect, we first present and discuss the state-of-the-art research. Then we summarise and analyse the development trends and point out future research opportunities and challenges.
期刊介绍:
IET Collaborative Intelligent Manufacturing is a Gold Open Access journal that focuses on the development of efficient and adaptive production and distribution systems. It aims to meet the ever-changing market demands by publishing original research on methodologies and techniques for the application of intelligence, data science, and emerging information and communication technologies in various aspects of manufacturing, such as design, modeling, simulation, planning, and optimization of products, processes, production, and assembly.
The journal is indexed in COMPENDEX (Elsevier), Directory of Open Access Journals (DOAJ), Emerging Sources Citation Index (Clarivate Analytics), INSPEC (IET), SCOPUS (Elsevier) and Web of Science (Clarivate Analytics).