{"title":"Ergodic properties of convolution operators","authors":"J. Galindo, E. Jord'a","doi":"10.7900/jot.2020jun25.2303","DOIUrl":null,"url":null,"abstract":"Let G be a locally compact group and μ be a measure on G. In this paper we find conditions for the convolution operators λp(μ):Lp(G)→Lp(G) to be mean ergodic and uniformly mean ergodic. The ergodic properties of the operators λp(μ) are related to the ergodic properties of the measure μ as well.","PeriodicalId":50104,"journal":{"name":"Journal of Operator Theory","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2020-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Operator Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.7900/jot.2020jun25.2303","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2
Abstract
Let G be a locally compact group and μ be a measure on G. In this paper we find conditions for the convolution operators λp(μ):Lp(G)→Lp(G) to be mean ergodic and uniformly mean ergodic. The ergodic properties of the operators λp(μ) are related to the ergodic properties of the measure μ as well.
期刊介绍:
The Journal of Operator Theory is rigorously peer reviewed and endevours to publish significant articles in all areas of operator theory, operator algebras and closely related domains.