Predictive control of a cascade of biochemical reactors

IF 0.9 Q4 CHEMISTRY, MULTIDISCIPLINARY
M. Mojto, M. Horváthová, Karol Kiš, M. Furka, M. Bakosová
{"title":"Predictive control of a cascade of biochemical reactors","authors":"M. Mojto, M. Horváthová, Karol Kiš, M. Furka, M. Bakosová","doi":"10.2478/acs-2021-0007","DOIUrl":null,"url":null,"abstract":"Abstract Rapid growth of the human population has led to various problems, such as massive overload of wastewater treatment plants. Therefore, optimal control of these plants is a relevant subject. This contribution analyses control of a cascade of ten biochemical reactors using simulation results with the aim to design optimal and predictive control strategies and to compare the achieved control performance. The plant represents a complicated process with many variables involved in the model structure, reduced to the single-input and single-output system. The first implemented approach is linear offset-free model predictive control which provides the optimal input trajectory minimising a quadratic cost function. The second control strategy is robust model predictive control with similar features as model predictive control but including the uncertainty of the process. The final approach is generalised predictive control, mostly used in the industry because of its simple structure and sufficiently good control performance. All considered predictive controllers provide satisfactory control performance and remove the steady-state control error despite the constrained control inputs.","PeriodicalId":7088,"journal":{"name":"Acta Chimica Slovaca","volume":"14 1","pages":"51 - 59"},"PeriodicalIF":0.9000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Chimica Slovaca","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/acs-2021-0007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Rapid growth of the human population has led to various problems, such as massive overload of wastewater treatment plants. Therefore, optimal control of these plants is a relevant subject. This contribution analyses control of a cascade of ten biochemical reactors using simulation results with the aim to design optimal and predictive control strategies and to compare the achieved control performance. The plant represents a complicated process with many variables involved in the model structure, reduced to the single-input and single-output system. The first implemented approach is linear offset-free model predictive control which provides the optimal input trajectory minimising a quadratic cost function. The second control strategy is robust model predictive control with similar features as model predictive control but including the uncertainty of the process. The final approach is generalised predictive control, mostly used in the industry because of its simple structure and sufficiently good control performance. All considered predictive controllers provide satisfactory control performance and remove the steady-state control error despite the constrained control inputs.
级联生化反应器的预测控制
人口的快速增长带来了各种各样的问题,如污水处理厂的大量超载。因此,对这些植物进行最优控制是一个相关的课题。本文利用仿真结果分析了十个生化反应器级联的控制,目的是设计最优和预测控制策略,并比较实现的控制性能。该装置是一个复杂的过程,模型结构中涉及许多变量,简化为单输入单输出系统。第一个实现的方法是线性无偏移模型预测控制,它提供了最小化二次代价函数的最优输入轨迹。第二种控制策略是鲁棒模型预测控制,它具有与模型预测控制相似的特征,但包含了过程的不确定性。最后一种方法是广义预测控制,由于其结构简单,控制性能足够好,在工业中应用较多。所考虑的所有预测控制器都具有令人满意的控制性能,并且在控制输入受限的情况下消除了稳态控制误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta Chimica Slovaca
Acta Chimica Slovaca CHEMISTRY, MULTIDISCIPLINARY-
自引率
12.50%
发文量
11
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信