Vector-valued fractal functions: Fractal dimension and fractional calculus

Pub Date : 2023-07-01 DOI:10.1016/j.indag.2023.03.005
Manuj Verma , Amit Priyadarshi , Saurabh Verma
{"title":"Vector-valued fractal functions: Fractal dimension and fractional calculus","authors":"Manuj Verma ,&nbsp;Amit Priyadarshi ,&nbsp;Saurabh Verma","doi":"10.1016/j.indag.2023.03.005","DOIUrl":null,"url":null,"abstract":"<div><p><span>There are many research available on the study of a real-valued fractal interpolation function and fractal dimension of its graph. In this paper, our main focus is to study the dimensional results for a vector-valued fractal interpolation function and its Riemann–Liouville fractional integral. Here, we give some results which ensure that dimensional results for vector-valued functions are quite different from real-valued functions. We determine interesting bounds for the </span>Hausdorff dimension<span> of the graph of a vector-valued fractal interpolation function. We also obtain bounds for the Hausdorff dimension of the associated invariant measure supported on the graph of a vector-valued fractal interpolation function. Next, we discuss more efficient upper bound for the Hausdorff dimension of measure in terms of probability vector and contraction ratios. Furthermore, we determine some dimensional results for the graph of the Riemann–Liouville fractional integral of a vector-valued fractal interpolation function.</span></p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019357723000265","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

There are many research available on the study of a real-valued fractal interpolation function and fractal dimension of its graph. In this paper, our main focus is to study the dimensional results for a vector-valued fractal interpolation function and its Riemann–Liouville fractional integral. Here, we give some results which ensure that dimensional results for vector-valued functions are quite different from real-valued functions. We determine interesting bounds for the Hausdorff dimension of the graph of a vector-valued fractal interpolation function. We also obtain bounds for the Hausdorff dimension of the associated invariant measure supported on the graph of a vector-valued fractal interpolation function. Next, we discuss more efficient upper bound for the Hausdorff dimension of measure in terms of probability vector and contraction ratios. Furthermore, we determine some dimensional results for the graph of the Riemann–Liouville fractional integral of a vector-valued fractal interpolation function.

分享
查看原文
向量值分形函数:分形维数与分数微积分
关于实值分形插值函数及其图的分形维数的研究有很多。本文主要研究了向量值分形插值函数及其Riemann-Liouville分数积分的量维结果。在这里,我们给出了一些结果,保证了向量值函数的量纲结果与实值函数有很大的不同。我们确定了一个向量值分形插值函数图的Hausdorff维的有趣边界。我们还得到了一个向量值分形插值函数图上支持的相关不变测度的Hausdorff维的界。接下来,我们从概率向量和收缩比的角度讨论测度的Hausdorff维的更有效的上界。进一步,我们确定了向量值分形插值函数的Riemann-Liouville分数积分图的一些量维结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信