{"title":"Vector-valued fractal functions: Fractal dimension and fractional calculus","authors":"Manuj Verma , Amit Priyadarshi , Saurabh Verma","doi":"10.1016/j.indag.2023.03.005","DOIUrl":null,"url":null,"abstract":"<div><p><span>There are many research available on the study of a real-valued fractal interpolation function and fractal dimension of its graph. In this paper, our main focus is to study the dimensional results for a vector-valued fractal interpolation function and its Riemann–Liouville fractional integral. Here, we give some results which ensure that dimensional results for vector-valued functions are quite different from real-valued functions. We determine interesting bounds for the </span>Hausdorff dimension<span> of the graph of a vector-valued fractal interpolation function. We also obtain bounds for the Hausdorff dimension of the associated invariant measure supported on the graph of a vector-valued fractal interpolation function. Next, we discuss more efficient upper bound for the Hausdorff dimension of measure in terms of probability vector and contraction ratios. Furthermore, we determine some dimensional results for the graph of the Riemann–Liouville fractional integral of a vector-valued fractal interpolation function.</span></p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019357723000265","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12
Abstract
There are many research available on the study of a real-valued fractal interpolation function and fractal dimension of its graph. In this paper, our main focus is to study the dimensional results for a vector-valued fractal interpolation function and its Riemann–Liouville fractional integral. Here, we give some results which ensure that dimensional results for vector-valued functions are quite different from real-valued functions. We determine interesting bounds for the Hausdorff dimension of the graph of a vector-valued fractal interpolation function. We also obtain bounds for the Hausdorff dimension of the associated invariant measure supported on the graph of a vector-valued fractal interpolation function. Next, we discuss more efficient upper bound for the Hausdorff dimension of measure in terms of probability vector and contraction ratios. Furthermore, we determine some dimensional results for the graph of the Riemann–Liouville fractional integral of a vector-valued fractal interpolation function.