{"title":"Studies on the effect of kinematic viscosity on electron-acoustic cylindrical and spherical solitary waves in a plasma with trapped electrons","authors":"Subrata Roy, Sandip Saha, S. Raut, A. Das","doi":"10.17512/jamcm.2021.2.06","DOIUrl":null,"url":null,"abstract":". In this article, using the standard reductive perturbation technique (RPT) to the basic governing equations for plasma comprising stationary ions, cold electrons and hot electrons abiding by vortex-like distribution, nonplanar Schamel Burger (NSB) equations is derived. In order to study the propagating properties of Electron acoustic (EA), progressive wave solution is obtained by employing the weighted residual method (WRM). Most of the observations of the EA wave are limited to the plasma environment where the effects of viscosity, collisions, ion streaming velocity are totally neglected. In our present observation, propagation of EA waves in a viscous plasma is described considering a weak damping (by adding a Burgers term) due to the inner particle collision and viscosity. Special attention has been given to study the impact of the other physical parameters in wave propagation in the framework of the Schamel Burgers medium.","PeriodicalId":43867,"journal":{"name":"Journal of Applied Mathematics and Computational Mechanics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Mathematics and Computational Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17512/jamcm.2021.2.06","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 6
Abstract
. In this article, using the standard reductive perturbation technique (RPT) to the basic governing equations for plasma comprising stationary ions, cold electrons and hot electrons abiding by vortex-like distribution, nonplanar Schamel Burger (NSB) equations is derived. In order to study the propagating properties of Electron acoustic (EA), progressive wave solution is obtained by employing the weighted residual method (WRM). Most of the observations of the EA wave are limited to the plasma environment where the effects of viscosity, collisions, ion streaming velocity are totally neglected. In our present observation, propagation of EA waves in a viscous plasma is described considering a weak damping (by adding a Burgers term) due to the inner particle collision and viscosity. Special attention has been given to study the impact of the other physical parameters in wave propagation in the framework of the Schamel Burgers medium.